메뉴 건너뛰기




Volumn 25, Issue 4, 2009, Pages 545-547

Non-negative matrix factorization of gene expression profiles: A plug-in for BRB-ArrayTools

Author keywords

[No Author keywords available]

Indexed keywords

ACCESS TO INFORMATION; ARTICLE; CLASSIFICATION; CLUSTER ANALYSIS; COMPUTER ANALYSIS; COMPUTER PROGRAM; DATA ANALYSIS; GENE EXPRESSION PROFILING; GENETIC ALGORITHM; INTERNET; MICROARRAY ANALYSIS; PRIORITY JOURNAL;

EID: 60149106101     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btp009     Document Type: Article
Times cited : (34)

References (13)
  • 1
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • Brunet,J.P. et al. (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl Acad. Sci. USA, 101, 4164-4169.
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 4164-4169
    • Brunet, J.P.1
  • 2
    • 48249151183 scopus 로고    scopus 로고
    • Devarajan,K. (2008) Nonnegative matrix factorization: An analytical and interpretive tool in computational biology. PLoS Comput. Biol., 4, e1000029.
    • Devarajan,K. (2008) Nonnegative matrix factorization: An analytical and interpretive tool in computational biology. PLoS Comput. Biol., 4, e1000029.
  • 3
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • research0036.1-0036.21
    • Dudoit,S. and Fridlyand,J. (2002) A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol., 3, research0036.1-0036.21.
    • (2002) Genome Biol , vol.3
    • Dudoit, S.1    Fridlyand, J.2
  • 4
    • 0004241258 scopus 로고    scopus 로고
    • 2nd edn. Chapman & Hall-CRC, London
    • Gordon,A. (1999) Classification. 2nd edn. Chapman & Hall-CRC, London.
    • (1999) Classification
    • Gordon, A.1
  • 5
    • 0035979259 scopus 로고    scopus 로고
    • Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments
    • Kerr,M.K. and Churchill,G.A. (2001) Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proc. Natl Acad. Sci. USA, 98, 8961-8965.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 8961-8965
    • Kerr, M.K.1    Churchill, G.A.2
  • 6
    • 0037810449 scopus 로고    scopus 로고
    • Subsystem identification through dimensionality reduction of large-scale gene expression data
    • Kim,P.M. and Tidor,B. (2003) Subsystem identification through dimensionality reduction of large-scale gene expression data. Genome Res., 13, 1706-1718.
    • (2003) Genome Res , vol.13 , pp. 1706-1718
    • Kim, P.M.1    Tidor, B.2
  • 7
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee,D.D. and Seung,H.S. (1999) Learning the parts of objects by nonnegative matrix factorization. Nature, 401, 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 8
    • 49849097634 scopus 로고    scopus 로고
    • The relationships among various nonnegative matrix factorization methods for clustering
    • IEEE computer society, Washington DC, USA. pp
    • Li,T. and Ding,C. (2006) The relationships among various nonnegative matrix factorization methods for clustering. In Proceedings of the Sixth International Conference on Data Mining, IEEE computer society, Washington DC, USA. pp. 362-371.
    • (2006) Proceedings of the Sixth International Conference on Data Mining , pp. 362-371
    • Li, T.1    Ding, C.2
  • 9
    • 0036856374 scopus 로고    scopus 로고
    • Methods of assessing reproducibility of clustering patterns observed in analyses of microarray data
    • McShane,L.M. et al. (2002) Methods of assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics, 18, 1462-1469.
    • (2002) Bioinformatics , vol.18 , pp. 1462-1469
    • McShane, L.M.1
  • 10
    • 34250115918 scopus 로고
    • An examination of procedures for determining number of clusters in a data set
    • Milligan,G.M. and Cooper,M.C. (1985) An examination of procedures for determining number of clusters in a data set. Psychometrika, 50 91-118.
    • (1985) Psychometrika , vol.50 , pp. 91-118
    • Milligan, G.M.1    Cooper, M.C.2
  • 11
    • 33747621839 scopus 로고    scopus 로고
    • BioNMF: A versatile tool for non-negative matrix factorization in biology
    • Pascual-Montano,A. et al. (2006) BioNMF: A versatile tool for non-negative matrix factorization in biology. BMC Bioinformatics, 7, 366.
    • (2006) BMC Bioinformatics , vol.7 , pp. 366
    • Pascual-Montano, A.1
  • 12
    • 60149101469 scopus 로고    scopus 로고
    • Analysis of gene expression data using BRB-Array Tools
    • Simon,R.M. et al. (2006) Analysis of gene expression data using BRB-Array Tools. Cancer Inform., 2, 1-7.
    • (2006) Cancer Inform , vol.2 , pp. 1-7
    • Simon, R.M.1
  • 13
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • Tibshirani,R. et al. (2001) Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B Stat. Soc. 63, 411-423.
    • (2001) J. R. Stat. Soc. Ser. B Stat. Soc , vol.63 , pp. 411-423
    • Tibshirani, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.