-
2
-
-
0346220062
-
The one phase Stefan problem subject to the specification of energy
-
Cannon J.R., and van der Hoek J. The one phase Stefan problem subject to the specification of energy. J Math Anal Appl 86 (1982) 281-291
-
(1982)
J Math Anal Appl
, vol.86
, pp. 281-291
-
-
Cannon, J.R.1
van der Hoek, J.2
-
3
-
-
1842488552
-
The classical solution of the one-dimensional two-phase Stefan problem with energy specification
-
Cannon J.R., and van der Hoek J. The classical solution of the one-dimensional two-phase Stefan problem with energy specification. Ann Mat Pura Appl 130 (1982) 385-398
-
(1982)
Ann Mat Pura Appl
, vol.130
, pp. 385-398
-
-
Cannon, J.R.1
van der Hoek, J.2
-
4
-
-
38249008385
-
Solution of inverse heat conduction problems with phase changes by the mollification method
-
Murio D.A. Solution of inverse heat conduction problems with phase changes by the mollification method. Comput Math Appl 24 (1992) 45-57
-
(1992)
Comput Math Appl
, vol.24
, pp. 45-57
-
-
Murio, D.A.1
-
6
-
-
5844311098
-
A one-phase inverse Stefan problem
-
El Badia A., and Moutazaim F. A one-phase inverse Stefan problem. Inverse Problems 15 (1999) 1507-1522
-
(1999)
Inverse Problems
, vol.15
, pp. 1507-1522
-
-
El Badia, A.1
Moutazaim, F.2
-
7
-
-
0001725996
-
A finite difference scheme for melting problems
-
Atthey D.R. A finite difference scheme for melting problems. J Inst Math Appl 13 (1974) 353-366
-
(1974)
J Inst Math Appl
, vol.13
, pp. 353-366
-
-
Atthey, D.R.1
-
8
-
-
0021466296
-
An inverse finite element technique to determine the change of phase interface location in one dimensional melting problem
-
Katz M.A., and Rubinsky B. An inverse finite element technique to determine the change of phase interface location in one dimensional melting problem. Numer Heat Transfer 7 (1984) 269-283
-
(1984)
Numer Heat Transfer
, vol.7
, pp. 269-283
-
-
Katz, M.A.1
Rubinsky, B.2
-
9
-
-
0020892492
-
A boundary element solution to Stefan's problem
-
Brebbia C.A., Futagami T., and Tanaka M. (Eds), Springer, Berlin
-
Wrobel L.C. A boundary element solution to Stefan's problem. In: Brebbia C.A., Futagami T., and Tanaka M. (Eds). Boundary elements V (1983), Springer, Berlin 173-182
-
(1983)
Boundary elements V
, pp. 173-182
-
-
Wrobel, L.C.1
-
10
-
-
39849100253
-
A computational method for inverse free boundary determination problem
-
Hon Y.C., and Li M. A computational method for inverse free boundary determination problem. Int J Numer Meth Eng 73 (2008) 1291-1309
-
(2008)
Int J Numer Meth Eng
, vol.73
, pp. 1291-1309
-
-
Hon, Y.C.1
Li, M.2
-
12
-
-
0000085314
-
Free boundary problems for parabolic equations I. Melting of solids
-
Friedman A. Free boundary problems for parabolic equations I. Melting of solids. J Math Mech 8 (1959) 499-517
-
(1959)
J Math Mech
, vol.8
, pp. 499-517
-
-
Friedman, A.1
-
13
-
-
3242769901
-
Existence, uniqueness, stability, and monotone dependence in a Stefan problem for heat equation
-
Cannon J.R., Douglas Jr. J., and Denson Hill C. Existence, uniqueness, stability, and monotone dependence in a Stefan problem for heat equation. J Math Mech 17 (1967) 1-19
-
(1967)
J Math Mech
, vol.17
, pp. 1-19
-
-
Cannon, J.R.1
Douglas Jr., J.2
Denson Hill, C.3
-
14
-
-
5844423875
-
Remarks on a Stefan problem
-
Cannon J.R., and Denson Hill C. Remarks on a Stefan problem. J Math Mech 17 (1967) 433-441
-
(1967)
J Math Mech
, vol.17
, pp. 433-441
-
-
Cannon, J.R.1
Denson Hill, C.2
-
15
-
-
34250450623
-
A two phase Stefan problem with temperature boundary conditions
-
Cannon J.R., and Primicerio M. A two phase Stefan problem with temperature boundary conditions. Ann Mat Pura Appl 88 (1971) 177-191
-
(1971)
Ann Mat Pura Appl
, vol.88
, pp. 177-191
-
-
Cannon, J.R.1
Primicerio, M.2
-
16
-
-
34250466589
-
A two phase Stefan problem with flux boundary conditions
-
Cannon J.R., and Primicerio M. A two phase Stefan problem with flux boundary conditions. Ann Mat Pura Appl 88 (1971) 193-205
-
(1971)
Ann Mat Pura Appl
, vol.88
, pp. 193-205
-
-
Cannon, J.R.1
Primicerio, M.2
-
17
-
-
34250460038
-
A two phase Stefan problem: regularity of the free boundary
-
Cannon J.R., and Primicerio M. A two phase Stefan problem: regularity of the free boundary. Ann Mat Pura Appl 88 (1971) 217-228
-
(1971)
Ann Mat Pura Appl
, vol.88
, pp. 217-228
-
-
Cannon, J.R.1
Primicerio, M.2
-
18
-
-
28844495248
-
Classical solutions of the one-dimensional two-phase Stefan problem
-
Cannon J.R., Henry D.B., and Kotlow D.B. Classical solutions of the one-dimensional two-phase Stefan problem. Ann Mat Pura Appl 107 (1975) 311-341
-
(1975)
Ann Mat Pura Appl
, vol.107
, pp. 311-341
-
-
Cannon, J.R.1
Henry, D.B.2
Kotlow, D.B.3
-
19
-
-
59849095229
-
A multi-phase Stefan problem and the disappearance of phases
-
Cannon J.R., Douglas Jr. J., and Denson Hill C. A multi-phase Stefan problem and the disappearance of phases. J Math Mech 17 (1967) 21-33
-
(1967)
J Math Mech
, vol.17
, pp. 21-33
-
-
Cannon, J.R.1
Douglas Jr., J.2
Denson Hill, C.3
-
20
-
-
0021574589
-
A comparison of the boundary element method and superposition methods
-
Burgess G., and Mahajerin E. A comparison of the boundary element method and superposition methods. Comput Struct 19 (1984) 697-705
-
(1984)
Comput Struct
, vol.19
, pp. 697-705
-
-
Burgess, G.1
Mahajerin, E.2
-
21
-
-
0032344733
-
The method of fundamental solutions for elliptic boundary value problems
-
Fairweather G., and Karageorghis A. The method of fundamental solutions for elliptic boundary value problems. Adv Comput Math 9 (1998) 69-95
-
(1998)
Adv Comput Math
, vol.9
, pp. 69-95
-
-
Fairweather, G.1
Karageorghis, A.2
-
22
-
-
0036860667
-
Method of fundamental solutions: singular value decomposition analysis
-
Ramachandran P. Method of fundamental solutions: singular value decomposition analysis. Commun Numer Meth Eng 18 (2002) 789-801
-
(2002)
Commun Numer Meth Eng
, vol.18
, pp. 789-801
-
-
Ramachandran, P.1
-
24
-
-
33645461386
-
Methods of fundamental solutions for time-dependent heat conduction problems
-
Chantasiriwan S. Methods of fundamental solutions for time-dependent heat conduction problems. Int J Numer Meth Eng 66 (2006) 147-165
-
(2006)
Int J Numer Meth Eng
, vol.66
, pp. 147-165
-
-
Chantasiriwan, S.1
-
25
-
-
0000776101
-
The method of fundamental solutions for potential, Helmholtz and diffusion problems
-
Comput. Mech. Publ., Southampton
-
Golberg M.A., and Chen C.S. The method of fundamental solutions for potential, Helmholtz and diffusion problems. Boundary integral methods: numerical and mathematical aspects (1999), Comput. Mech. Publ., Southampton 105-176
-
(1999)
Boundary integral methods: numerical and mathematical aspects
, pp. 105-176
-
-
Golberg, M.A.1
Chen, C.S.2
-
26
-
-
8344243002
-
-
Young DL, Tsai CC, Murugesan K, Fan CM, Chen CW. Time-dependent fundamental solutions for homogeneous diffusion problems. Eng Anal Boundary Elements 2004;28:1463-73, 173-82.
-
Young DL, Tsai CC, Murugesan K, Fan CM, Chen CW. Time-dependent fundamental solutions for homogeneous diffusion problems. Eng Anal Boundary Elements 2004;28:1463-73, 173-82.
-
-
-
-
27
-
-
1842842972
-
A fundamental solution method for inverse heat conduction problems
-
Hon Y.C., and Wei T.A. A fundamental solution method for inverse heat conduction problems. Eng Anal Boundary Elem 28 (2004) 489-495
-
(2004)
Eng Anal Boundary Elem
, vol.28
, pp. 489-495
-
-
Hon, Y.C.1
Wei, T.A.2
-
28
-
-
12344271462
-
The method of fundamental solutions for the backward heat conduction problem
-
Mera N.S. The method of fundamental solutions for the backward heat conduction problem. Inverse Problems Sci Eng 13 (2005) 65-78
-
(2005)
Inverse Problems Sci Eng
, vol.13
, pp. 65-78
-
-
Mera, N.S.1
-
29
-
-
0008215313
-
A method for the approximate solution of limiting problems in mathematical physics
-
Kupradze V.D. A method for the approximate solution of limiting problems in mathematical physics. USSR Comput Maths Math Phys 4 (1964) 199-205
-
(1964)
USSR Comput Maths Math Phys
, vol.4
, pp. 199-205
-
-
Kupradze, V.D.1
-
30
-
-
47049117962
-
A method of fundamental solutions for transient heat conduction
-
Johansson B.T., and Lesnic D. A method of fundamental solutions for transient heat conduction. Eng Anal Boundary Elem 32 (2008) 697-703
-
(2008)
Eng Anal Boundary Elem
, vol.32
, pp. 697-703
-
-
Johansson, B.T.1
Lesnic, D.2
-
32
-
-
0033588427
-
The method of fundamental solutions for heat conduction in layered materials
-
Berger J.R., and Karageorghis A. The method of fundamental solutions for heat conduction in layered materials. Int J Numer Meth Eng 45 (1999) 1681-1694
-
(1999)
Int J Numer Meth Eng
, vol.45
, pp. 1681-1694
-
-
Berger, J.R.1
Karageorghis, A.2
-
33
-
-
84981756128
-
Parabolic equations in one space variable and the non-characteristic Cauchy problem
-
Denson Hill C. Parabolic equations in one space variable and the non-characteristic Cauchy problem. Comm Pure Appl Math 20 (1967) 619-633
-
(1967)
Comm Pure Appl Math
, vol.20
, pp. 619-633
-
-
Denson Hill, C.1
-
34
-
-
36048958473
-
Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods
-
Gorzelanczyk P., and Kolodziej J.A. Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods. Eng Anal Boundary Elem 32 (2008) 64-75
-
(2008)
Eng Anal Boundary Elem
, vol.32
, pp. 64-75
-
-
Gorzelanczyk, P.1
Kolodziej, J.A.2
|