-
6
-
-
77958398767
-
The convergence of a class of double-rank minimization algorithm
-
Broyden C G 1970 The convergence of a class of double-rank minimization algorithm J. Int. Math Appl. 6 76-90
-
(1970)
J. Int. Math Appl.
, vol.6
, pp. 76-90
-
-
Broyden, C.G.1
-
8
-
-
0021504329
-
The solution of inverse Stefan problem in two space variables
-
Colton D and Reemtsen R 1984 The solution of inverse Stefan problem in two space variables SIAM J Appl. Math. 5996-1013
-
(1984)
SIAM J Appl. Math.
, vol.5
, pp. 996-1013
-
-
Colton, D.1
Reemtsen, R.2
-
10
-
-
2942571757
-
The inverse Stefan problem as a problem of nonlinear approximation theory
-
Jochum P 1980 The inverse Stefan problem as a problem of nonlinear approximation theory J Approx 30 81-98
-
(1980)
J Approx
, vol.30
, pp. 81-98
-
-
Jochum, P.1
-
11
-
-
0038271532
-
The numerical solution of the inverse Stefan problem
-
Jochum P 1982 The numerical solution of the inverse Stefan problem Numer Math. 34 411-29
-
(1982)
Numer Math.
, vol.34
, pp. 411-429
-
-
Jochum, P.1
-
12
-
-
0021466296
-
An inverse finite element technique to determine the change of phase interface location in one dimensional melting problem
-
Katz M A and Reemtsen R 1984 An inverse finite element technique to determine the change of phase interface location in one dimensional melting problem Numer Heat Transfer 7 269-83
-
(1984)
Numer Heat Transfer
, vol.7
, pp. 269-283
-
-
Katz, M.A.1
Reemtsen, R.2
-
13
-
-
5844415759
-
A method for the numerical solution of the one-dimensional inverse Stefan problem
-
Reemtsen R and Kirsch A 1984 A method for the numerical solution of the one-dimensional inverse Stefan problem Numer. Math, 45 253-73
-
(1984)
Numer. Math
, vol.45
, pp. 253-273
-
-
Reemtsen, R.1
Kirsch, A.2
-
14
-
-
84968497764
-
Conditioning of quasi-Newton methods for function minimization
-
Shanno D F 1970 Conditioning of quasi-Newton methods for function minimization Math. Comput. 24 647-56
-
(1970)
Math. Comput.
, vol.24
, pp. 647-656
-
-
Shanno, D.F.1
-
15
-
-
5844311793
-
Inverse problem: Identification of a melting front in the 2D case
-
Wang X. Rosset-Louërat M M and Bénard C 1992 Inverse problem: identification of a melting front in the 2D case Int. Ser. Numer. Math. 107 99-110
-
(1992)
Int. Ser. Numer. Math.
, vol.107
, pp. 99-110
-
-
Wang, X.1
Rosset-Louërat, M.M.2
Bénard, C.3
|