-
2
-
-
0043049887
-
-
10.1063/1.454033
-
A. D. Becke, J. Chem. Phys. 88, 2547 (1988). 10.1063/1.454033
-
(1988)
J. Chem. Phys.
, vol.88
, pp. 2547
-
-
Becke, A.D.1
-
3
-
-
34447260582
-
-
10.1063/1.458452
-
B. Delley, J. Chem. Phys. 92, 508 (1990). 10.1063/1.458452
-
(1990)
J. Chem. Phys.
, vol.92
, pp. 508
-
-
Delley, B.1
-
6
-
-
84980086883
-
-
10.1002/cpa.3160100201
-
T. Kato, Pure Appl. Math. 10, 151 (1957). 10.1002/cpa.3160100201
-
(1957)
Pure Appl. Math.
, vol.10
, pp. 151
-
-
Kato, T.1
-
7
-
-
0346541894
-
-
10.1002/(SICI)1097-461X(1998)70:4/5<681::AID-QUA14>3.0.CO;2-5
-
A. Nagy, Int. J. Quantum Chem. 70, 681 (1998). 10.1002/(SICI)1097- 461X(1998)70:4/5<681::AID-QUA14>3.0.CO;2-5
-
(1998)
Int. J. Quantum Chem.
, vol.70
, pp. 681
-
-
Nagy, A.1
-
9
-
-
36749059482
-
-
10.1063/1.1732864
-
E. B. Wilson, J. Chem. Phys. 36, 2232 (1962). 10.1063/1.1732864
-
(1962)
J. Chem. Phys.
, vol.36
, pp. 2232
-
-
Wilson, E.B.1
-
12
-
-
19644400832
-
-
10.1103/PhysRevLett.93.153004
-
O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani, Phys. Rev. Lett. 93, 153004 (2004). 10.1103/PhysRevLett.93.153004
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 153004
-
-
Von Lilienfeld, O.A.1
Tavernelli, I.2
Rothlisberger, U.3
Sebastiani, D.4
-
13
-
-
59249101936
-
-
Strictly speaking, the local maxima at the nuclear positions are not "true" (3,-3) critical points because the gradient vector of the charge density is discontinuous at the nuclear cusp that is present in both the wave function and the density. The critical point is labeled by its rank ω and signature σ in the form of (ω,σ). The former is equal to the number of nonzero eigenvalues (of the Hessian matrix) of ρ at the critical point and the latter is the algebraic sum of the signs of the eigenvalues, i.e., (3,-3) denotes the critical point where all curvatures are negative and ρ is a local maximum (Ref.). Nevertheless, there always exists a function homeomorphic to ρ (r; RI) which coincides with ρ almost everywhere and for which the nuclear positions are (3,-3) critical points (Ref.). In this sense, the nuclear positions behave topologically as do (3,-3) critical points in the charge distribution.
-
Strictly speaking, the local maxima at the nuclear positions are not "true" (3,-3) critical points because the gradient vector of the charge density is discontinuous at the nuclear cusp that is present in both the wave function and the density. The critical point is labeled by its rank ω and signature σ in the form of (ω,σ). The former is equal to the number of nonzero eigenvalues (of the Hessian matrix) of ρ at the critical point and the latter is the algebraic sum of the signs of the eigenvalues, i.e., (3,-3) denotes the critical point where all curvatures are negative and ρ is a local maximum (Ref.). Nevertheless, there always exists a function homeomorphic to ρ (r; RI) which coincides with ρ almost everywhere and for which the nuclear positions are (3,-3) critical points (Ref.). In this sense, the nuclear positions behave topologically as do (3,-3) critical points in the charge distribution.
-
-
-
-
15
-
-
20044388814
-
-
10.1103/PhysRevB.71.115110
-
O. V. Yazyev, I. Tavernelli, L. Helm, and U. Rothlisberger, Phys. Rev. B 71, 115110 (2005). 10.1103/PhysRevB.71.115110
-
(2005)
Phys. Rev. B
, vol.71
, pp. 115110
-
-
Yazyev, O.V.1
Tavernelli, I.2
Helm, L.3
Rothlisberger, U.4
-
16
-
-
22944433884
-
-
10.1063/1.1829051
-
O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani, J. Chem. Phys. 122, 014113 (2005). 10.1063/1.1829051
-
(2005)
J. Chem. Phys.
, vol.122
, pp. 014113
-
-
Von Lilienfeld, O.A.1
Tavernelli, I.2
Rothlisberger, U.3
Sebastiani, D.4
-
19
-
-
34347390658
-
-
10.1103/PhysRevB.75.205131
-
I. Chun Lin, M. D. Coutinho-Neto, C. Felsenheimer, O. A. von Lilienfeld, I. Tavernelli, and U. Rothlisberger, Phys. Rev. B 75, 205131 (2007). 10.1103/PhysRevB.75.205131
-
(2007)
Phys. Rev. B
, vol.75
, pp. 205131
-
-
Chun Lin, I.1
Coutinho-Neto, M.D.2
Felsenheimer, C.3
Von Lilienfeld, O.A.4
Tavernelli, I.5
Rothlisberger, U.6
-
20
-
-
33344455992
-
-
10.1103/PhysRevB.71.195119
-
O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani, Phys. Rev. B 71, 195119 (2005). 10.1103/PhysRevB.71.195119
-
(2005)
Phys. Rev. B
, vol.71
, pp. 195119
-
-
Von Lilienfeld, O.A.1
Tavernelli, I.2
Rothlisberger, U.3
Sebastiani, D.4
-
21
-
-
35948931421
-
-
10.1021/ct700049s
-
E. Tapavicza, I.-C. Lin, O. A. von Lilienfeld, I. Tavernelli, M. C. Coutinho-Neto, and U. Rothlisberger, J. Chem. Theory Comput. 3, 1673 (2007). 10.1021/ct700049s
-
(2007)
J. Chem. Theory Comput.
, vol.3
, pp. 1673
-
-
Tapavicza, E.1
Lin, I.-C.2
Von Lilienfeld, O.A.3
Tavernelli, I.4
Coutinho-Neto, M.C.5
Rothlisberger, U.6
-
22
-
-
38349153878
-
-
10.1021/jp0750102
-
I.-C. Lin, O. A. von Lilienfeld, M. D. Coutinho-Neto, I. Tavernelli, and U. Rothlisberger, J. Phys. Chem. B 111, 14346 (2007). 10.1021/jp0750102
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 14346
-
-
Lin, I.-C.1
Von Lilienfeld, O.A.2
Coutinho-Neto, M.D.3
Tavernelli, I.4
Rothlisberger, U.5
-
24
-
-
59249108184
-
-
CPMD, Version 3.8, copyright IBM Corp.
-
CPMD, Version 3.8, copyright IBM Corp., 1990, copyright MPI für Festkörperforschung Stuttgart, 1997 (http://www.cpmd.org).
-
(1990)
-
-
-
25
-
-
4243553426
-
-
10.1103/PhysRevA.38.3098
-
A. D. Becke, Phys. Rev. A 38, 3098 (1988). 10.1103/PhysRevA.38.3098
-
(1988)
Phys. Rev. a
, vol.38
, pp. 3098
-
-
Becke, A.D.1
-
27
-
-
0000323669
-
-
edited by J. Grotendorst, NIC Series (John von Neumann Institute for Computing, Jülich
-
D. Marx and J. Hutter, Modern Methods and Algorithms of Quantum Chemistry, edited by, J. Grotendorst,, NIC Series (John von Neumann Institute for Computing, Jülich, 2000), Vol. 1, pp. 301-449
-
(2000)
Modern Methods and Algorithms of Quantum Chemistry
, vol.1
, pp. 301-449
-
-
Marx, D.1
Hutter, J.2
-
28
-
-
59249088258
-
-
http://www.fz-juelich.de/wsqc/proceedings/
-
-
-
|