-
4
-
-
8744270531
-
-
10.1103/PhysRevB.31.6207
-
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985). 10.1103/PhysRevB.31.6207
-
(1985)
Phys. Rev. B
, vol.31
, pp. 6207
-
-
Büttiker, M.1
Imry, Y.2
Landauer, R.3
Pinhas, S.4
-
5
-
-
33749406012
-
-
10.1103/PhysRevLett.57.1761
-
M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986). 10.1103/PhysRevLett. 57.1761
-
(1986)
Phys. Rev. Lett.
, vol.57
, pp. 1761
-
-
Büttiker, M.1
-
8
-
-
58949104321
-
-
An additional complication arises when we ask the question of whether the steady state that interacting electrons establish dynamically when flowing in the system is the same as the one imposed a priori via scattering boundary conditions in a single-particle picture; if that steady state can be generated with different initial conditions or if it is unique (see Ref.).
-
An additional complication arises when we ask the question of whether the steady state that interacting electrons establish dynamically when flowing in the system is the same as the one imposed a priori via scattering boundary conditions in a single-particle picture; if that steady state can be generated with different initial conditions or if it is unique (see Ref.).
-
-
-
-
9
-
-
58949097100
-
-
With abuse of terminology this is often referred to as "nonequilibrium Green's function formalism." This is, however, not correct since the latter truly refers to a many-body perturbation technique, while the use of ground-state DFT in extracting transmission probabilities is done in the context of single-particle scattering theory.
-
With abuse of terminology this is often referred to as "nonequilibrium Green's function formalism." This is, however, not correct since the latter truly refers to a many-body perturbation technique, while the use of ground-state DFT in extracting transmission probabilities is done in the context of single-particle scattering theory.
-
-
-
-
10
-
-
0346246276
-
-
See, e.g., 10.1103/PhysRevLett.84.979;
-
See, e.g., M. Di Ventra, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett. 84, 979 (2000) 10.1103/PhysRevLett.84.979
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 979
-
-
Di Ventra, M.1
Pantelides, S.T.2
Lang, N.D.3
-
11
-
-
0037081414
-
-
10.1103/PhysRevB.65.045402;
-
M. Di Ventra and N. D. Lang, Phys. Rev. B 65, 045402 (2001) 10.1103/PhysRevB.65.045402
-
(2001)
Phys. Rev. B
, vol.65
, pp. 045402
-
-
Di Ventra, M.1
Lang, N.D.2
-
14
-
-
0013291529
-
-
10.1103/PhysRevB.66.035322
-
J. J. Palacios, A. J. Perez-Jimenez, E. Louis, E. SanFabian, and J. A. Verges, Phys. Rev. B 66, 035322 (2002). 10.1103/PhysRevB.66.035322
-
(2002)
Phys. Rev. B
, vol.66
, pp. 035322
-
-
Palacios, J.J.1
Perez-Jimenez, A.J.2
Louis, E.3
Sanfabian, E.4
Verges, J.A.5
-
15
-
-
0001030724
-
-
10.1103/PhysRevA.38.1149
-
S. K. Ghosh and A. K. Dhara, Phys. Rev. A 38, 1149 (1988). 10.1103/PhysRevA.38.1149
-
(1988)
Phys. Rev. a
, vol.38
, pp. 1149
-
-
Ghosh, S.K.1
Dhara, A.K.2
-
16
-
-
3343014339
-
-
10.1103/PhysRevLett.77.2037
-
G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996). 10.1103/PhysRevLett.77.2037
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 2037
-
-
Vignale, G.1
Kohn, W.2
-
18
-
-
4243971222
-
-
10.1103/PhysRevB.23.6851
-
D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981). 10.1103/PhysRevB.23.6851
-
(1981)
Phys. Rev. B
, vol.23
, pp. 6851
-
-
Fisher, D.S.1
Lee, P.A.2
-
21
-
-
0034906836
-
-
10.1103/PhysRevB.63.155304
-
A. Kamenev and W. Kohn, Phys. Rev. B 63, 155304 (2001). 10.1103/PhysRevB.63.155304
-
(2001)
Phys. Rev. B
, vol.63
, pp. 155304
-
-
Kamenev, A.1
Kohn, W.2
-
23
-
-
34548399888
-
-
10.1103/PhysRevB.76.115102
-
E. Prodan and R. Car, Phys. Rev. B 76, 115102 (2007). 10.1103/PhysRevB.76.115102
-
(2007)
Phys. Rev. B
, vol.76
, pp. 115102
-
-
Prodan, E.1
Car, R.2
-
24
-
-
58949085969
-
-
This does not exclude (and it is in fact highly possible) that the viewpoint itself championed by Landauer misses important information inherent to the true experimental problem we are considering in this paper (see, e.g., Ref.). We do not address this fundamental issue here. We simply show that even within the Landauer viewpoint to conduction (with all its assumptions) the corresponding Eq. 4 is incomplete.
-
This does not exclude (and it is in fact highly possible) that the viewpoint itself championed by Landauer misses important information inherent to the true experimental problem we are considering in this paper (see, e.g., Ref.). We do not address this fundamental issue here. We simply show that even within the Landauer viewpoint to conduction (with all its assumptions) the corresponding Eq. 4 is incomplete.
-
-
-
-
25
-
-
27744476738
-
-
The role of dissipation in stabilizing the ballistic current and possibly increasing the resistance above the ballistic value has recently been emphasized by 10.1088/0953-8984/17/46/N01
-
The role of dissipation in stabilizing the ballistic current and possibly increasing the resistance above the ballistic value has recently been emphasized by M. P. Das and F. Green, J. Phys.: Condens. Matter 17, V13 (2005). 10.1088/0953-8984/17/46/N01
-
(2005)
J. Phys.: Condens. Matter
, vol.17
, pp. 13
-
-
Das, M.P.1
Green, F.2
-
26
-
-
27144496078
-
-
10.1103/PhysRevLett.94.186810
-
N. Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Phys. Rev. Lett. 94, 186810 (2005). 10.1103/PhysRevLett.94.186810
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 186810
-
-
Sai, N.1
Zwolak, M.2
Vignale, G.3
Di Ventra, M.4
-
27
-
-
0003916787
-
-
Wiley, New York
-
I. Prigogine, Introduction to the Thermodynamics of Irreversible Processes (Wiley, New York, 1967). Note that the principle of minimum entropy production for a system close to local equilibrium has a meaning only when two or more forces act on the system to produce respective fluxes. In the present case these forces are the electrochemical potential differences between any two reservoirs which generate currents at the leads.
-
(1967)
Introduction to the Thermodynamics of Irreversible Processes
-
-
Prigogine, I.1
-
28
-
-
28844456517
-
-
See, e.g., 10.1103/PhysRevLett.95.146402
-
See, e.g., C. Toher, A. Filippetti, S. Sanvito, and K. Burke, Phys. Rev. Lett. 95, 146402 (2005). 10.1103/PhysRevLett.95.146402
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 146402
-
-
Toher, C.1
Filippetti, A.2
Sanvito, S.3
Burke, K.4
-
29
-
-
0001252666
-
-
10.1103/PhysRevB.60.7966
-
S. Conti and G. Vignale, Phys. Rev. B 60, 7966 (1999). 10.1103/PhysRevB.60.7966
-
(1999)
Phys. Rev. B
, vol.60
, pp. 7966
-
-
Conti, S.1
Vignale, G.2
-
31
-
-
34547317284
-
-
10.1103/PhysRevLett.98.259702
-
N. Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Phys. Rev. Lett. 98, 259702 (2007). 10.1103/PhysRevLett.98.259702
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 259702
-
-
Sai, N.1
Zwolak, M.2
Vignale, G.3
Di Ventra, M.4
-
33
-
-
33947190900
-
-
10.1103/PhysRevB.75.115410
-
N. Sai, N. Bushong, R. Hatcher, and M. Di Ventra, Phys. Rev. B 75, 115410 (2007). 10.1103/PhysRevB.75.115410
-
(2007)
Phys. Rev. B
, vol.75
, pp. 115410
-
-
Sai, N.1
Bushong, N.2
Hatcher, R.3
Di Ventra, M.4
-
36
-
-
58949094096
-
-
This assumption is not necessary and is only relevant in the choice of definition of conductance as defined in terms of electrochemical differences or electrostatic differences (see, e.g., Ref.). In either case, the quantitative difference between the electrochemical and electrostatic potentials is small on length scales much larger than the electron screening length.
-
This assumption is not necessary and is only relevant in the choice of definition of conductance as defined in terms of electrochemical differences or electrostatic differences (see, e.g., Ref.). In either case, the quantitative difference between the electrochemical and electrostatic potentials is small on length scales much larger than the electron screening length.
-
-
-
-
37
-
-
58949090959
-
-
In the absence of a magnetic field, the following stronger conditions are found to hold (Ref.): Σα∂α σαβ (r, r′) =0 and Σβ∂′βσαβ (r, r′) =0.
-
In the absence of a magnetic field, the following stronger conditions are found to hold (Ref.): Σα∂α σαβ (r, r′) =0 and Σβ∂′ βσαβ (r, r′) =0.
-
-
-
-
38
-
-
58949090044
-
-
By contrast, the full current-current response function yields the response of the electric current to the external vector potential only. The transition from scalar electric potential to a longitudinal vector potential is done via a gauge transformation.
-
By contrast, the full current-current response function yields the response of the electric current to the external vector potential only. The transition from scalar electric potential to a longitudinal vector potential is done via a gauge transformation.
-
-
-
-
40
-
-
10644250257
-
-
10.1103/PhysRev.136.B864;
-
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) 10.1103/PhysRev.136.B864
-
(1964)
Phys. Rev.
, vol.136
, pp. 864
-
-
Hohenberg, P.1
Kohn, W.2
-
41
-
-
0042113153
-
-
10.1103/PhysRev.140.A1133
-
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140.A1133
-
(1965)
Phys. Rev.
, vol.140
, pp. 1133
-
-
Kohn, W.1
Sham, L.J.2
-
42
-
-
58949087105
-
-
Since the Kohn-Sham system is noninteracting, there is no difference between the (full) current response function χ (KS) and the proper response function χ̃(KS).
-
Since the Kohn-Sham system is noninteracting, there is no difference between the (full) current response function χ (KS) and the proper response function χ̃(KS).
-
-
-
-
43
-
-
33745778149
-
-
edited by M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E. K. U. Gross (Springer-Verlag, Berlin
-
G. Vignale, in Time-Dependent Density Functional Theory, edited by, M. A. L. Marques,,, C. A. Ullrich,,, F. Nogueira,,, A. Rubio,,, K. Burke,, and, E. K. U. Gross, (Springer-Verlag, Berlin, 2006), and references therein.
-
(2006)
Time-Dependent Density Functional Theory
-
-
Vignale, G.1
-
44
-
-
58949088960
-
-
Notice that by virtue of the identities 2 3 the restricted matrix contains no less information than the original one.
-
Notice that by virtue of the identities 2 3 the restricted matrix contains no less information than the original one.
-
-
-
-
47
-
-
0003580854
-
-
Pergamon, New York
-
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics (Pergamon, New York, 1959), Vol. 6.
-
(1959)
Fluid Mechanics, Course of Theoretical Physics
, vol.6
-
-
Landau, L.D.1
Lifshitz, E.M.2
|