-
2
-
-
8744270531
-
-
Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Phys. Rev. B 1985, 31, 6207.
-
(1985)
Phys. Rev. B
, vol.31
, pp. 6207
-
-
Büttiker, M.1
Imry, Y.2
Landauer, R.3
Pinhas, S.4
-
3
-
-
0346246276
-
-
Di Ventra, M.; Pantelides, S. T.; Lang, N. D. Phys. Rev. Lett. 2000, 84, 979.
-
(2000)
Phys. Rev. Lett
, vol.84
, pp. 979
-
-
Di Ventra, M.1
Pantelides, S.T.2
Lang, N.D.3
-
4
-
-
0035124977
-
-
Ventra, M.; Pantelides, S. T.; Lang, N. D. Phys. Rev. Lett. 2001, 86, 288.
-
(2001)
Phys. Rev. Lett
, vol.86
, pp. 288
-
-
Ventra, M.1
Pantelides, S.T.2
Lang, N.D.3
-
5
-
-
0000042026
-
-
Ventra, M.; Pantelides, S. T.; Lang, N. D. Appl. Phys. Lett. 2000, 76, 3448.
-
(2000)
Appl. Phys. Lett
, vol.76
, pp. 3448
-
-
Ventra, M.1
Pantelides, S.T.2
Lang, N.D.3
-
7
-
-
33845203190
-
-
Prociuk, A.; Van Kuiken, B.; Dunietz, B. D. J. Chem. Phys. 2006, 125, 204717.
-
(2006)
J. Chem. Phys
, vol.125
, pp. 204717
-
-
Prociuk, A.1
Van Kuiken, B.2
Dunietz, B.D.3
-
8
-
-
4243720937
-
-
Taylor, J.; Guo, H.; Wang, J. Phys. Rev. B 2001, 63, 245407.
-
(2001)
Phys. Rev. B
, vol.63
, pp. 245407
-
-
Taylor, J.1
Guo, H.2
Wang, J.3
-
10
-
-
0035449733
-
-
Xue, Y.; Datta, S.; Ratner, M. A. J. Chem. Phys. 2001, 115, 4292.
-
(2001)
J. Chem. Phys
, vol.115
, pp. 4292
-
-
Xue, Y.1
Datta, S.2
Ratner, M.A.3
-
11
-
-
0013291529
-
-
Palacios, J. J.; Pérez-Jiménez, A. J.; Louis, E.; San-Fabián, E.; Vergés, J. A. Phys. Rev. B 2002, 66, 035322.
-
(2002)
Phys. Rev. B
, vol.66
, pp. 035322
-
-
Palacios, J.J.1
Pérez-Jiménez, A.J.2
Louis, E.3
San-Fabián, E.4
Vergés, J.A.5
-
13
-
-
4143086686
-
-
Vignale, G.; Ullrich, C. A.; Conti, S. Phys. Rev. Lett. 1997, 79, 4878.
-
(1997)
Phys. Rev. Lett
, vol.79
, pp. 4878
-
-
Vignale, G.1
Ullrich, C.A.2
Conti, S.3
-
16
-
-
0004185784
-
-
Cambridge University Press: Cambridge
-
Frisch, U. Turbulence; Cambridge University Press: Cambridge, 1995.
-
(1995)
Turbulence
-
-
Frisch, U.1
-
21
-
-
30644470693
-
-
Bushong, N.; Sai, N.; Di Ventra, M. Nano Lett. 2005, 5, 2569.
-
(2005)
Nano Lett
, vol.5
, pp. 2569
-
-
Bushong, N.1
Sai, N.2
Di Ventra, M.3
-
22
-
-
33947190900
-
-
Sai, N.; Bushong, N.; Hatcher, R.; Di Ventra, M. Phys. Rev. B 2007, 75, 115410.
-
(2007)
Phys. Rev. B
, vol.75
, pp. 115410
-
-
Sai, N.1
Bushong, N.2
Hatcher, R.3
Di Ventra, M.4
-
23
-
-
33749984690
-
-
Cheng, C.-L.; Evans, J. S.; Voorhis, T. V. Phys, Rev. B 2006, 74, 155112.
-
(2006)
Phys, Rev. B
, vol.74
, pp. 155112
-
-
Cheng, C.-L.1
Evans, J.S.2
Voorhis, T.V.3
-
25
-
-
0034730492
-
-
Topinka, M. A.; LeRoy, B. J.; Shaw, S. E. J.; Heller, E. J.; Westervelt, R. M.; Maranowski, K. D.; Gossard, A. C. Science 2000, 289, 2323.
-
(2000)
Science
, vol.289
, pp. 2323
-
-
Topinka, M.A.1
LeRoy, B.J.2
Shaw, S.E.J.3
Heller, E.J.4
Westervelt, R.M.5
Maranowski, K.D.6
Gossard, A.C.7
-
27
-
-
33846382383
-
-
D'Agosta, R.; Sai, N.; Di Ventra, M. Nano Lett. 2006, 6, 2935.
-
(2006)
Nano Lett
, vol.6
, pp. 2935
-
-
D'Agosta, R.1
Sai, N.2
Di Ventra, M.3
-
28
-
-
33745748485
-
-
Huang, Z. F.; Xu, B. Q.; Chen, Y.-C.; Di Ventra, M.; Tao, N. J. Nano Lett. 2006, 6, 1240.
-
(2006)
Nano Lett
, vol.6
, pp. 1240
-
-
Huang, Z.F.1
Xu, B.Q.2
Chen, Y.-C.3
Di Ventra, M.4
Tao, N.J.5
-
29
-
-
33846087396
-
-
Tsutsui, M.; Kurokawa, S.; Sakai, A. Nunotechnology 2006, 17, 5334.
-
(2006)
Nunotechnology
, vol.17
, pp. 5334
-
-
Tsutsui, M.1
Kurokawa, S.2
Sakai, A.3
-
37
-
-
84858085037
-
-
Each electrode is 51.8 Å wide in the x direction, and 22.4 Å long in the z direction of current flow (see Figure I). The width of the rectangular bridge is 2.8 Å, and the gap between the electrodes is 9.8 Å.
-
Each electrode is 51.8 Å wide in the x direction, and 22.4 Å long in the z direction of current flow (see Figure I). The width of the rectangular bridge is 2.8 Å, and the gap between the electrodes is 9.8 Å.
-
-
-
-
38
-
-
34547249705
-
-
We have used the adiabatic local density approximation to the scalar exchange-correlation potential,29-31 as derived by Ceperley and Alder32 and parametrized by Perdew and Zunger.33
-
33
-
-
-
-
39
-
-
84858085038
-
-
The grid spacing of the jellium system is 0.7 Å, and the timestep used to propagate the system is 2.5 × 10-3 fs. We used the Chebyshev method34 for constructing the time-evolution operator
-
34 for constructing the time-evolution operator.
-
-
-
-
40
-
-
34547255885
-
-
For the simulation of the Navier-Stokes equations, we use Dirchlet boundary conditions for the velocity at the inlet, and Neumann boundary conditions at the outlet
-
For the simulation of the Navier-Stokes equations, we use Dirchlet boundary conditions for the velocity at the inlet, and Neumann boundary conditions at the outlet.
-
-
-
-
41
-
-
34547301120
-
-
The issue of compressibility is also related to the treatment of the fluid at the boundaries of the confining structure. In general, wavefunctions tend to exhibit exponentially decreasing density at the edges of a confining potential, while incompressible classical fluids are described with hard walls and no-slip boundary conditions. The assumption in the Naiver-Stokes equations that the electron liquid is incompressible also neglects the formation of surface charges; for a discussion of dynamical charging effects near nanoscopic junctions, see ref 20
-
The issue of compressibility is also related to the treatment of the fluid at the boundaries of the confining structure. In general, wavefunctions tend to exhibit exponentially decreasing density at the edges of a confining potential, while incompressible classical fluids are described with hard walls and "no-slip" boundary conditions. The assumption in the Naiver-Stokes equations that the electron liquid is incompressible also neglects the formation of surface charges; for a discussion of dynamical charging effects near nanoscopic junctions, see ref 20.
-
-
-
|