-
1
-
-
0036027227
-
Periodic orbits, symbolic dynamics and topological entropy for the restricted 3-body problem
-
Arioli G. Periodic orbits, symbolic dynamics and topological entropy for the restricted 3-body problem. Comm. Math. Phys. 231 1 (2002) 1-24
-
(2002)
Comm. Math. Phys.
, vol.231
, Issue.1
, pp. 1-24
-
-
Arioli, G.1
-
2
-
-
0035917024
-
Symbolic dynamics for the Hénon-Heiles Hamiltonian on the critical level
-
Arioli G., and Zgliczyński P. Symbolic dynamics for the Hénon-Heiles Hamiltonian on the critical level. J. Differential Equations 171 1 (2001) 173-202
-
(2001)
J. Differential Equations
, vol.171
, Issue.1
, pp. 173-202
-
-
Arioli, G.1
Zgliczyński, P.2
-
3
-
-
1042279871
-
Stable manifolds associated to fixed points with linear part equal to identity
-
Baldomá I., and Fontich E. Stable manifolds associated to fixed points with linear part equal to identity. J. Differential Equations 197 (2004) 45-72
-
(2004)
J. Differential Equations
, vol.197
, pp. 45-72
-
-
Baldomá, I.1
Fontich, E.2
-
4
-
-
9344233816
-
Stable manifolds and the Perron-Irwin method
-
Chaperon M. Stable manifolds and the Perron-Irwin method. Ergodic Theory Dynam. Systems 24 5 (2004) 1359-1394
-
(2004)
Ergodic Theory Dynam. Systems
, vol.24
, Issue.5
, pp. 1359-1394
-
-
Chaperon, M.1
-
5
-
-
33646882850
-
A verified optimization technique to locate chaotic regions of Hénon systems
-
Csendes T., Garay B., and Bánhelyi B. A verified optimization technique to locate chaotic regions of Hénon systems. J. Global Optim. 35 1 (2006) 145-160
-
(2006)
J. Global Optim.
, vol.35
, Issue.1
, pp. 145-160
-
-
Csendes, T.1
Garay, B.2
Bánhelyi, B.3
-
6
-
-
0002480739
-
Isolating blocks and symbolic dynamics
-
Easton R. Isolating blocks and symbolic dynamics. J. Differential Equations 17 (1975) 96-118
-
(1975)
J. Differential Equations
, vol.17
, pp. 96-118
-
-
Easton, R.1
-
7
-
-
0001708795
-
Homoclinic phenomena in Hamiltonian systems with several degrees of freedom
-
Easton R. Homoclinic phenomena in Hamiltonian systems with several degrees of freedom. J. Differential Equations 29 (1978) 241-252
-
(1978)
J. Differential Equations
, vol.29
, pp. 241-252
-
-
Easton, R.1
-
8
-
-
0033101751
-
Stable curves asymptotic to a degenerate fixed point
-
Fontich E. Stable curves asymptotic to a degenerate fixed point. Nonlinear Anal. 35 (1999) 711-733
-
(1999)
Nonlinear Anal.
, vol.35
, pp. 711-733
-
-
Fontich, E.1
-
9
-
-
0007431667
-
Rigorous numerical studies of the existence of periodic orbits for the Hénon map
-
SCAN'97. Lyon, 1997
-
Galias Z. Rigorous numerical studies of the existence of periodic orbits for the Hénon map. SCAN'97. Lyon, 1997. J.UCS 4 2 (1998) 114-124
-
(1998)
J.UCS
, vol.4
, Issue.2
, pp. 114-124
-
-
Galias, Z.1
-
10
-
-
0031063208
-
Positive topological entropy of Chua's circuit: A computer assisted proof
-
Galias Z. Positive topological entropy of Chua's circuit: A computer assisted proof. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 7 2 (1997) 331-349
-
(1997)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.7
, Issue.2
, pp. 331-349
-
-
Galias, Z.1
-
11
-
-
0001201892
-
Computer assisted proof of chaos in the Lorenz equations
-
Galias Z., and Zgliczyński P. Computer assisted proof of chaos in the Lorenz equations. Phys. D 115 3-4 (1998) 165-188
-
(1998)
Phys. D
, vol.115
, Issue.3-4
, pp. 165-188
-
-
Galias, Z.1
Zgliczyński, P.2
-
12
-
-
0035622331
-
Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Hénon map
-
Galias Z., and Zgliczyński P. Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Hénon map. Nonlinearity 14 5 (2001) 909-932
-
(2001)
Nonlinearity
, vol.14
, Issue.5
, pp. 909-932
-
-
Galias, Z.1
Zgliczyński, P.2
-
13
-
-
33644518721
-
Topological methods in the instability problem of Hamiltonian systems
-
Gidea M., and de la Llave R. Topological methods in the instability problem of Hamiltonian systems. Discrete Contin. Dyn. Syst. 14 2 (2006) 295-328
-
(2006)
Discrete Contin. Dyn. Syst.
, vol.14
, Issue.2
, pp. 295-328
-
-
Gidea, M.1
de la Llave, R.2
-
14
-
-
34249311964
-
Shadowing orbits for transition chains of invariant tori alternating with Birkhoff zones of instability
-
Gidea M., and Robinson C. Shadowing orbits for transition chains of invariant tori alternating with Birkhoff zones of instability. Nonlinearity 20 5 (2007) 1115-1143
-
(2007)
Nonlinearity
, vol.20
, Issue.5
, pp. 1115-1143
-
-
Gidea, M.1
Robinson, C.2
-
15
-
-
3543092733
-
Covering relations for multidimensional dynamical systems
-
Gidea M., and Zgliczyński P. Covering relations for multidimensional dynamical systems. J. Differential Equations 202 1 (2004) 33-58
-
(2004)
J. Differential Equations
, vol.202
, Issue.1
, pp. 33-58
-
-
Gidea, M.1
Zgliczyński, P.2
-
19
-
-
22944480883
-
A new proof of the stable manifold theorem for hyperbolic fixed points on surfaces
-
Holland M., and Luzzatto S. A new proof of the stable manifold theorem for hyperbolic fixed points on surfaces. J. Difference Equ. Appl. 11 6 (2005) 535-551
-
(2005)
J. Difference Equ. Appl.
, vol.11
, Issue.6
, pp. 535-551
-
-
Holland, M.1
Luzzatto, S.2
-
20
-
-
0010055859
-
On the stable manifold theorem
-
Irwin M.C. On the stable manifold theorem. Bull. London Math. Soc. 2 (1970) 196-198
-
(1970)
Bull. London Math. Soc.
, vol.2
, pp. 196-198
-
-
Irwin, M.C.1
-
21
-
-
0001595986
-
A new proof of the pseudostable manifold theorem
-
Irwin M.C. A new proof of the pseudostable manifold theorem. J. London Math. Soc. 21 (1980) 557-566
-
(1980)
J. London Math. Soc.
, vol.21
, pp. 557-566
-
-
Irwin, M.C.1
-
22
-
-
58749107817
-
Rigorous verification of the existence of cocoon bifurcation for the Michelson system
-
Kokubu H., Wilczak D., and Zgliczyński P. Rigorous verification of the existence of cocoon bifurcation for the Michelson system. Nonlinearity 20 (2007) 2147-2174
-
(2007)
Nonlinearity
, vol.20
, pp. 2147-2174
-
-
Kokubu, H.1
Wilczak, D.2
Zgliczyński, P.3
-
23
-
-
0002007686
-
A stable manifold theorem for degenerate fixed points with applications to celestial mechanics
-
McGehee R. A stable manifold theorem for degenerate fixed points with applications to celestial mechanics. J. Differential Equations 14 (1973) 70-88
-
(1973)
J. Differential Equations
, vol.14
, pp. 70-88
-
-
McGehee, R.1
-
24
-
-
0030490229
-
A new proof of the stable manifold theorem
-
McGehee R., and Sander E. A new proof of the stable manifold theorem. Z. Angew. Math. Phys. 47 4 (1996) 497-513
-
(1996)
Z. Angew. Math. Phys.
, vol.47
, Issue.4
, pp. 497-513
-
-
McGehee, R.1
Sander, E.2
-
25
-
-
0035324902
-
Topological entropy for multidimensional perturbations of one-dimensional maps
-
Misiurewicz M., and Zgliczyński P. Topological entropy for multidimensional perturbations of one-dimensional maps. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11 5 (2001) 1443-1446
-
(2001)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.11
, Issue.5
, pp. 1443-1446
-
-
Misiurewicz, M.1
Zgliczyński, P.2
-
27
-
-
0001029040
-
Rigorous chaos verification in discrete dynamical system
-
Neumaier A., and Rage T. Rigorous chaos verification in discrete dynamical system. Phys. D 67 (1993) 327-346
-
(1993)
Phys. D
, vol.67
, pp. 327-346
-
-
Neumaier, A.1
Rage, T.2
-
28
-
-
12244303214
-
Computation of the local stable and unstable manifolds
-
Ombach J. Computation of the local stable and unstable manifolds. Univ. Iagel. Acta Math. 32 (1995) 129-136
-
(1995)
Univ. Iagel. Acta Math.
, vol.32
, pp. 129-136
-
-
Ombach, J.1
-
29
-
-
0000561907
-
Rigorous verification of chaos in a molecular model
-
Rage T., Neumaier A., and Schlier C. Rigorous verification of chaos in a molecular model. Phys. Rev. E 50 (1994) 2682-2688
-
(1994)
Phys. Rev. E
, vol.50
, pp. 2682-2688
-
-
Rage, T.1
Neumaier, A.2
Schlier, C.3
-
30
-
-
84972510836
-
Stable manifolds of semi-hyperbolic fixed points
-
Robbin J.W. Stable manifolds of semi-hyperbolic fixed points. Illinois J. Math. 15 (1971) 595-609
-
(1971)
Illinois J. Math.
, vol.15
, pp. 595-609
-
-
Robbin, J.W.1
-
32
-
-
0002061016
-
A rigorous ODE solver and Smale's 14th problem
-
Tucker W. A rigorous ODE solver and Smale's 14th problem. Found. Comput. Math. 2 1 (2002) 53-117
-
(2002)
Found. Comput. Math.
, vol.2
, Issue.1
, pp. 53-117
-
-
Tucker, W.1
-
33
-
-
30644464142
-
Symmetric heteroclinic connections in the Michelson system-A computer assisted proof
-
Wilczak D. Symmetric heteroclinic connections in the Michelson system-A computer assisted proof. SIAM J. Appl. Dyn. Syst. 4 3 (2005) 489-514
-
(2005)
SIAM J. Appl. Dyn. Syst.
, vol.4
, Issue.3
, pp. 489-514
-
-
Wilczak, D.1
-
34
-
-
33846933597
-
The existence of Shilnikov homoclinic orbits in the Michelson system: A computer assisted proof
-
Wilczak D. The existence of Shilnikov homoclinic orbits in the Michelson system: A computer assisted proof. Found. Comput. Math. 6 (2006) 495-535
-
(2006)
Found. Comput. Math.
, vol.6
, pp. 495-535
-
-
Wilczak, D.1
-
35
-
-
0037346778
-
Heteroclinic connections between periodic orbits in planar restricted circular three-body problem-A computer assisted proof
-
Wilczak D., and Zgliczyński P. Heteroclinic connections between periodic orbits in planar restricted circular three-body problem-A computer assisted proof. Comm. Math. Phys. 234 1 (2003) 37-75
-
(2003)
Comm. Math. Phys.
, vol.234
, Issue.1
, pp. 37-75
-
-
Wilczak, D.1
Zgliczyński, P.2
-
36
-
-
34247254380
-
Topological method for symmetric periodic orbits for maps with a reversing symmetry
-
Wilczak D., and Zgliczyński P. Topological method for symmetric periodic orbits for maps with a reversing symmetry. Discrete Contin. Dyn. Sys. Ser. A 17 (2007) 629-652
-
(2007)
Discrete Contin. Dyn. Sys. Ser. A
, vol.17
, pp. 629-652
-
-
Wilczak, D.1
Zgliczyński, P.2
-
37
-
-
18144406872
-
Topological horseshoes and delay differential equations
-
Wójcik K., and Zgliczyński P. Topological horseshoes and delay differential equations. Discrete Contin. Dyn. Syst. 12 5 (2005) 827-852
-
(2005)
Discrete Contin. Dyn. Syst.
, vol.12
, Issue.5
, pp. 827-852
-
-
Wójcik, K.1
Zgliczyński, P.2
-
38
-
-
0041540896
-
Computer assisted proof of chaos in the Rössler equations and in the Hénon map
-
Zgliczyński P. Computer assisted proof of chaos in the Rössler equations and in the Hénon map. Nonlinearity 10 1 (1997) 243-252
-
(1997)
Nonlinearity
, vol.10
, Issue.1
, pp. 243-252
-
-
Zgliczyński, P.1
-
39
-
-
0033264634
-
Sharkovskii's theorem for multidimensional perturbations of one-dimensional maps
-
Zgliczyński P. Sharkovskii's theorem for multidimensional perturbations of one-dimensional maps. Ergodic Theory Dynam. Systems 19 6 (1999) 1655-1684
-
(1999)
Ergodic Theory Dynam. Systems
, vol.19
, Issue.6
, pp. 1655-1684
-
-
Zgliczyński, P.1
|