-
1
-
-
0035285304
-
More on linear differential systems with small delays
-
Arino O., Pituk M. (2001): More on Linear Differential Systems with Small Delays, J. Differential Equations 170, 381-407.
-
(2001)
J. Differential Equations
, vol.170
, pp. 381-407
-
-
Arino, O.1
Pituk, M.2
-
2
-
-
0037845173
-
Inertial and slow manifolds for delay equations with small delays
-
Chicone C. (2003): Inertial and slow manifolds for delay equations with small delays, J. Differential Equations 190, 364-406.
-
(2003)
J. Differential Equations
, vol.190
, pp. 364-406
-
-
Chicone, C.1
-
3
-
-
0003687337
-
-
Springer Verlag, Berlin, Heidelberg, New York
-
Diekmann Q., van Gils S.A., Verduyn Lunel S.M., Walther H.-O. (1995): Delay Equations. Functional, Complex, and Nonlinear Analysis, Springer Verlag, Berlin, Heidelberg, New York
-
(1995)
Delay Equations. Functional, Complex, and Nonlinear Analysis
-
-
Diekmann, Q.1
Van Gils, S.A.2
Verduyn Lunel, S.M.3
Walther, H.-O.4
-
4
-
-
0011625896
-
On Ryabov's asymptotic characterization of the solutions of quasi-linear differential equations with small delays
-
Driver R.D. (1968): On Ryabov's asymptotic characterization of the solutions of quasi-linear differential equations with small delays, SIAM Rev. 10, 329-341.
-
(1968)
SIAM Rev.
, vol.10
, pp. 329-341
-
-
Driver, R.D.1
-
5
-
-
0001313950
-
Linear differential systems with small delays
-
Driver R.D. (1976): Linear differential systems with small delays, J. Differential Equations 21, 148-166.
-
(1976)
J. Differential Equations
, vol.21
, pp. 148-166
-
-
Driver, R.D.1
-
6
-
-
0031063208
-
Positive topological entropy of Chua's circuit: A computer assisted proof
-
Galias Z. (1997): Positive topological entropy of Chua's circuit: A computer assisted proof, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 7, 331-349.
-
(1997)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.7
, pp. 331-349
-
-
Galias, Z.1
-
7
-
-
0001201892
-
Computer assisted proof of chaos in the Lorenz system
-
Galias Z., Zgliczyński P. (1998): Computer assisted proof of chaos in the Lorenz system, Physica D 115,165-188.
-
(1998)
Physica D
, vol.115
, pp. 165-188
-
-
Galias, Z.1
Zgliczyński, P.2
-
8
-
-
3543092733
-
Covering relations for multidimensional dynamical systems
-
Gidea M., Zgliczyński P. (2004): Covering relations for multidimensional dynamical systems, J. Differential Equations, 202, 33-58.
-
(2004)
J. Differential Equations
, vol.202
, pp. 33-58
-
-
Gidea, M.1
Zgliczyński, P.2
-
9
-
-
0000499166
-
The Leray-Schauder index and the fixed point theory for arbitrary ANR's
-
Granas A. (1972): The Leray-Schauder index and the fixed point theory for arbitrary ANR's, Bull. Soc. Math. France 100, 209-228.
-
(1972)
Bull. Soc. Math. France
, vol.100
, pp. 209-228
-
-
Granas, A.1
-
10
-
-
0003478288
-
-
Springer Verlag, Berlin, Heidelberg, New York
-
Guckenheimer J., Holmes P. (1983): Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer Verlag, Berlin, Heidelberg, New York.
-
(1983)
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
-
-
Guckenheimer, J.1
Holmes, P.2
-
12
-
-
0003492055
-
-
Springer Verlag, Berlin, Heidelberg, New York
-
Hale J., Verduyn Lunel S.M. (1993): Introduction to Functional Differential Equations, Springer Verlag, Berlin, Heidelberg, New York.
-
(1993)
Introduction to Functional Differential Equations
-
-
Hale, J.1
Verduyn Lunel, S.M.2
-
13
-
-
0003421845
-
-
Springer Verlag, Berlin, Heidelberg, New York
-
Hale J., Koçak H. (1991): Dynamics and Bifurcations, Springer Verlag, Berlin, Heidelberg, New York.
-
(1991)
Dynamics and Bifurcations
-
-
Hale, J.1
Koçak, H.2
-
14
-
-
0001127849
-
Ryabov's special solutions of functional differential equations
-
Jarnik J., Kurzweil J. (1975): Ryabov's special solutions of functional differential equations, Boll. Un. Mat. Ital. (4) 11, 198-208.
-
(1975)
Boll. Un. Mat. Ital. (4)
, vol.11
, pp. 198-208
-
-
Jarnik, J.1
Kurzweil, J.2
-
17
-
-
0000241853
-
Deterministic non-periodic flow
-
Lorenz E. (1963): Deterministic non-periodic flow, J. Atmos. Sci. 20, 130-141.
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.1
-
18
-
-
0032393729
-
Chaos in the Lorenz equations: A computer assisted proof. Part II: Details
-
Mischaikow K., Mrozek M. (1998): Chaos in the Lorenz equations: A computer assisted proof. Part II: Details, Math. Comp. 67, 1023-1046.
-
(1998)
Math. Comp.
, vol.67
, pp. 1023-1046
-
-
Mischaikow, K.1
Mrozek, M.2
-
19
-
-
0038102160
-
Conley index theory
-
(eds: B. Fiedler, G. Ioos, N. Kopell), Elsevier, Amsterdam
-
Mischaikow K., Mrozek M.(2002): Conley Index Theory. Handbook of Dynamical Systems, Vol. 3. (eds: B. Fiedler, G. Ioos, N. Kopell), Elsevier, Amsterdam.
-
(2002)
Handbook of Dynamical Systems
, vol.3
-
-
Mischaikow, K.1
Mrozek, M.2
-
20
-
-
0035216342
-
Chaos in the lorenz equations: A computer assisted proof. Part III: Classical case parameter values
-
Mischaikow K., Mrozek M., Szymczak A. (2001): Chaos in the Lorenz equations:A computer assisted proof. Part III: Classical Case Parameter Values, J. Differential Equations 169, 17-56.
-
(2001)
J. Differential Equations
, vol.169
, pp. 17-56
-
-
Mischaikow, K.1
Mrozek, M.2
Szymczak, A.3
-
21
-
-
0038778941
-
Application of the method of small parameters of Lyapunov-Poincaré in the theory of systems with delay
-
1961
-
Ryabov Yu. A. (1961): Application of the method of small parameters of Lyapunov-Poincaré in the theory of systems with delay (Russian), Inž. Ž. 1 no. 2 1961, 3-15.
-
(1961)
Inž. Ž.
, vol.1
, Issue.2
, pp. 3-15
-
-
Ryabov, Yu.A.1
-
22
-
-
0038778940
-
Certain asymptotic properties of linear systems with small time delay
-
Ryabov Yu. A. (1963): Certain asymptotic properties of linear systems with small time delay, Soviet Math. Dokl. 4, 928-930.
-
(1963)
Soviet Math. Dokl.
, vol.4
, pp. 928-930
-
-
Ryabov, Yu.A.1
-
23
-
-
0002061016
-
A Rigorous ODE solver and Smale's 14th Problem
-
Tucker W. (2002): A Rigorous ODE solver and Smale's 14th Problem, Found. Comput. Math. 2, 53-117.
-
(2002)
Found. Comput. Math.
, vol.2
, pp. 53-117
-
-
Tucker, W.1
-
24
-
-
0142119428
-
Chaos in the kuramoto-sivashinsky equations - A computer assisted proof
-
Wilczak D. (2003): Chaos in the Kuramoto-Sivashinsky equations - a computer assisted proof, J. Differential Equations 194, 433-459.
-
(2003)
J. Differential Equations
, vol.194
, pp. 433-459
-
-
Wilczak, D.1
-
25
-
-
0000527735
-
Fixed point index for iterations, topological horseshoe and chaos
-
Zgliczyński P. (1996) Fixed point index for iterations, topological horseshoe and chaos, Topol. Methods Nonlinear Anal. 8, 169-177.
-
(1996)
Topol. Methods Nonlinear Anal.
, vol.8
, pp. 169-177
-
-
Zgliczyński, P.1
-
26
-
-
0033264634
-
Sharkovskii's Theorem for multidimensional perturbations of one-dimensional maps
-
Zgliczyński P. (1999): Sharkovskii's Theorem for multidimensional perturbations of one-dimensional maps, Ergodic Theory Dynam. Systems 19, 1655-1684.
-
(1999)
Ergodic Theory Dynam. Systems
, vol.19
, pp. 1655-1684
-
-
Zgliczyński, P.1
-
27
-
-
0007457275
-
Sharkovskii's Theorem for multidimensional perturbations of one-dimensional maps II
-
Zgliczyński P. (1999): Sharkovskii's Theorem for multidimensional perturbations of one-dimensional maps II, Topol Methods Nonlinear Anal. 14, 169-182.
-
(1999)
Topol Methods Nonlinear Anal.
, vol.14
, pp. 169-182
-
-
Zgliczyński, P.1
-
28
-
-
0041540896
-
Computer assisted proof of chaos in the Hénon map and in the Rössler equations
-
Zgliczyński P. (1997): Computer assisted proof of chaos in the Hénon map and in the Rössler equations, Nonlinearity10, 243-252.
-
(1997)
Nonlinearity
, vol.10
, pp. 243-252
-
-
Zgliczyński, P.1
-
29
-
-
0040843322
-
Multidimensional perturbations of one-dimensional maps and stability of Sharkovskii ordering
-
Zgliczyński P. (1999): Multidimensional perturbations of one-dimensional maps and stability of Sharkovskii ordering, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9, 1867-1876.
-
(1999)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.9
, pp. 1867-1876
-
-
Zgliczyński, P.1
-
30
-
-
2642531129
-
Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the kuramoto-sivashinsky PDE - A computer, assisted proof
-
Zgliczyński P. (2004): Rigorous numerics for dissipative Partial Differential Equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE - a computer, assisted proof, Found. Comput. Math., 4, 157-185.
-
(2004)
Found. Comput. Math.
, vol.4
, pp. 157-185
-
-
Zgliczyński, P.1
|