-
1
-
-
0343390226
-
Wealth condensation in a simple model of economy
-
J.P. Bouchaud M. Mézard 2000 Wealth condensation in a simple model of economy Physica A 282 536
-
(2000)
Physica A
, vol.282
, pp. 536
-
-
Bouchaud, J.P.1
Mézard, M.2
-
3
-
-
0000762438
-
Statistical mechanics of money: How saving propensity affects its distributions
-
A. Chakraborti B.K. Chakrabarti 2000 Statistical mechanics of money: how saving propensity affects its distributions Eur. Phys. J. B 17 167
-
(2000)
Eur. Phys. J. B
, vol.17
, pp. 167
-
-
Chakraborti, A.1
Chakrabarti, B.K.2
-
4
-
-
0742307220
-
Pareto law in a kinetic model of market with random saving propensity
-
A. Chatterjee B.K. Chakrabarti S.S. Manna 2004 Pareto law in a kinetic model of market with random saving propensity Physica A 335 155 163
-
(2004)
Physica A
, vol.335
, pp. 155-163
-
-
Chatterjee, A.1
Chakrabarti, B.K.2
Manna, S.S.3
-
5
-
-
24644516564
-
On a kinetic model for a simple market economy
-
S. Cordier L. Pareschi G. Toscani 2005 On a kinetic model for a simple market economy J. Stat. Phys. 120 253 277
-
(2005)
J. Stat. Phys.
, vol.120
, pp. 253-277
-
-
Cordier, S.1
Pareschi, L.2
Toscani, G.3
-
7
-
-
34548049760
-
Hydrodynamics from kinetic models of conservative economies
-
B. Düring G. Toscani 2007 Hydrodynamics from kinetic models of conservative economies Physica A 384 493 506
-
(2007)
Physica A
, vol.384
, pp. 493-506
-
-
Düring, B.1
Toscani, G.2
-
8
-
-
0036393182
-
Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails
-
M.H. Ernst R. Brito 2002 Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails J. Stat. Phys. 109 407 432
-
(2002)
J. Stat. Phys.
, vol.109
, pp. 407-432
-
-
Ernst, M.H.1
Brito, R.2
-
9
-
-
3042831202
-
A Theory of power-law distributions in financial market fluctuations
-
X. Gabaix P. Gopikrishnan V. Plerou H.E. Stanley 2003 A Theory of power-law distributions in financial market fluctuations Nature 423 267 270
-
(2003)
Nature
, vol.423
, pp. 267-270
-
-
Gabaix, X.1
Gopikrishnan, P.2
Plerou, V.3
Stanley, H.E.4
-
10
-
-
0012057129
-
Measurement of inequality and incomes
-
C. Gini 1921 Measurement of inequality and incomes Econ. J. 31 124 126
-
(1921)
Econ. J.
, vol.31
, pp. 124-126
-
-
Gini, C.1
-
11
-
-
32644476555
-
Recent trends in dividends payments and share buy-backs
-
I. Hill R. Taylor 2001 Recent trends in dividends payments and share buy-backs Econ. Trends 567 42 44
-
(2001)
Econ. Trends
, vol.567
, pp. 42-44
-
-
Hill, I.1
Taylor, R.2
-
14
-
-
0031209425
-
New evidence for the power law distribution of wealth
-
M. Levy S. Solomon 1997 New evidence for the power law distribution of wealth Physica A 242 90
-
(1997)
Physica A
, vol.242
, pp. 90
-
-
Levy, M.1
Solomon, S.2
-
15
-
-
43949149356
-
A microscopic model of the stock market: Cycles, booms and crashes
-
M. Levy H. Levy S. Solomon 1994 A microscopic model of the stock market: Cycles, booms and crashes Econ. Lett. 45 103 111
-
(1994)
Econ. Lett.
, vol.45
, pp. 103-111
-
-
Levy, M.1
Levy, H.2
Solomon, S.3
-
17
-
-
0021450941
-
Calculating the fundamental solution to linear convection-diffusion problems
-
N. Liron J. Rubinstein 1984 Calculating the fundamental solution to linear convection-diffusion problems SIAM J. App. Math. 44 493 511
-
(1984)
SIAM J. App. Math.
, vol.44
, pp. 493-511
-
-
Liron, N.1
Rubinstein, J.2
-
18
-
-
41349116705
-
Theoretical analysis and simulations of the generalized Lotka-Volterra model
-
O. Malcai O. Biham S. Solomon P. Richmond 2002 Theoretical analysis and simulations of the generalized Lotka-Volterra model Phys. Rev. E 66 031102
-
(2002)
Phys. Rev. e
, vol.66
, pp. 031102
-
-
Malcai, O.1
Biham, O.2
Solomon, S.3
Richmond, P.4
-
19
-
-
0001099154
-
Levy walks and enhanced diffusion in Milan stock exchange
-
R.N. Mantegna 1991 Levy walks and enhanced diffusion in Milan stock exchange Physica A 179 232
-
(1991)
Physica A
, vol.179
, pp. 232
-
-
Mantegna, R.N.1
-
21
-
-
39149109342
-
On steady distributions of kinetic models of conservative economies
-
D. Matthes G. Toscani 2008 On steady distributions of kinetic models of conservative economies J. Stat. Phys. 130 1087 1117
-
(2008)
J. Stat. Phys.
, vol.130
, pp. 1087-1117
-
-
Matthes, D.1
Toscani, G.2
-
22
-
-
33751062343
-
Self-similarity and power-like tails in nonconservative kinetic models
-
L. Pareschi G. Toscani 2006 Self-similarity and power-like tails in nonconservative kinetic models J. Stat. Phys. 124 747 779
-
(2006)
J. Stat. Phys.
, vol.124
, pp. 747-779
-
-
Pareschi, L.1
Toscani, G.2
-
25
-
-
42749100055
-
Inelastically scattering particles and wealth distribution in an open economy
-
F. Slanina 2004 Inelastically scattering particles and wealth distribution in an open economy Phys. Rev. E 69 046102
-
(2004)
Phys. Rev. e
, vol.69
, pp. 046102
-
-
Slanina, F.1
-
26
-
-
21544455557
-
Stochastic Lotka-Volterra systems of competing auto-catalytic agents lead generically to truncated Pareto power wealth distribution, truncated Levy distribution of market returns, clustered volatility, booms and crashes
-
Kluwer Academic Dordrecht
-
Solomon, S.: Stochastic Lotka-Volterra systems of competing auto-catalytic agents lead generically to truncated Pareto power wealth distribution, truncated Levy distribution of market returns, clustered volatility, booms and crashes. In: Refenes, A.-P.N., Burgess, A.N., Moody, J.E. (eds.) Computational Finance 97. Kluwer Academic, Dordrecht (1998)
-
(1998)
Computational Finance 97
-
-
Solomon, S.1
Refenes, A.-P.N.2
Burgess, A.N.3
Moody, J.E.4
-
27
-
-
0035471556
-
Power laws of wealth, market order volumes and market returns
-
S. Solomon P. Richmond 2001 Power laws of wealth, market order volumes and market returns Physica A 299 188 197
-
(2001)
Physica A
, vol.299
, pp. 188-197
-
-
Solomon, S.1
Richmond, P.2
-
28
-
-
1642267397
-
The dissipative linear Boltzmann equation
-
G. Spiga G. Toscani 2004 The dissipative linear Boltzmann equation Appl. Math. Lett. 17 295 301
-
(2004)
Appl. Math. Lett.
, vol.17
, pp. 295-301
-
-
Spiga, G.1
Toscani, G.2
|