-
2
-
-
0000411415
-
The theory of the spatially uniform Boltzmann equation for Maxwell molecules
-
A. V Bobylev, The theory of the spatially uniform Boltzmann equation for Maxwell molecules, Sov Sci Rev C 7:112-229 (1988).
-
(1988)
Sov Sci Rev C
, vol.7
, pp. 112-229
-
-
Bobylev, A.V.1
-
3
-
-
0034343060
-
On some properties of kinetic and hydrodynamics equations for inelastic interactions
-
A. V Bobylev, J. A- Carrillo, and I. Gamba, On some properties of kinetic and hydrodynamics equations for inelastic interactions, J. Statist. Phys. 98:743-773 (2000).
-
(2000)
J. Statist. Phys.
, vol.98
, pp. 743-773
-
-
Bobylev, A.V.1
Carrillo, J.A.2
Gamba, I.3
-
4
-
-
0343390226
-
Wealth condensation in a simple model of economy
-
J. P. Bouchaud, and M. Mézard, Wealth condensation in a simple model of economy, Physica A 282:536-545 (2000).
-
(2000)
Physica A
, vol.282
, pp. 536-545
-
-
Bouchaud, J.P.1
Mézard, M.2
-
5
-
-
0003200990
-
The mathematical theory of dilute gases
-
Springer-Verlag, Berlin
-
C. Cercignani, R. Illner, and M. Pulvirenti, The mathematical theory of dilute gases, Springer Series in Applied Mathematical Sciences, Vol. 106 (Springer-Verlag, Berlin 1994.)
-
(1994)
Springer Series in Applied Mathematical Sciences
, vol.106
-
-
Cercignani, C.1
Illner, R.2
Pulvirenti, M.3
-
6
-
-
0038401337
-
Distributions of money in models of market economy
-
A.Chakraborti, Distributions of money in models of market economy, Int. J. Modern Phys. C 13:1315-1321(2002).
-
(2002)
Int. J. Modern Phys. C
, vol.13
, pp. 1315-1321
-
-
Chakraborti, A.1
-
7
-
-
0000762438
-
Statistical mechanics of money: How saving propensity affects its distributions
-
A. Chakraborti, and B. K. Chakrabarti, Statistical mechanics of money: how saving propensity affects its distributions, Eur. Phys. J. B. 17:167-170 (2000).
-
(2000)
Eur. Phys. J. B.
, vol.17
, pp. 167-170
-
-
Chakraborti, A.1
Chakrabarti, B.K.2
-
9
-
-
1642375713
-
High energy tails for inelastic Maxwell models
-
M. H. Ernst, and R. Brito, High energy tails for inelastic Maxwell models. Europhys. Lett. 43:497-502 (2002).
-
(2002)
Europhys. Lett.
, vol.43
, pp. 497-502
-
-
Ernst, M.H.1
Brito, R.2
-
10
-
-
0036393182
-
Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails
-
M.H. Ernst, and R. Brito, Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails. J. Statist. Phys. 109:407-432 (2002).
-
(2002)
J. Statist. Phys.
, vol.109
, pp. 407-432
-
-
Ernst, M.H.1
Brito, R.2
-
12
-
-
3042831202
-
A theory of power-law distributions in financial market fluctuations
-
X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, A theory of power-law distributions in financial market fluctuations, Nature 423:267-270 (2003).
-
(2003)
Nature
, vol.423
, pp. 267-270
-
-
Gabaix, X.1
Gopikrishnan, P.2
Plerou, V.3
Stanley, H.E.4
-
13
-
-
0036744545
-
Follow the money
-
B. Hayes, Follow the money, Am. Scientist 90,(5):400-405 (2002).
-
(2002)
Am. Scientist
, vol.90
, Issue.5
, pp. 400-405
-
-
Hayes, B.1
-
15
-
-
0030371120
-
A kinetic model for vehicular traffic derived from a stochastic microscopic model
-
A. Klar, and R. Wegener, A kinetic model for vehicular traffic derived from a stochastic microscopic model, Transp. Theory Stat. Phys. 25(7):78 5-798 (1996).
-
(1996)
Transp. Theory Stat. Phys.
, vol.25
, Issue.7
, pp. 785-798
-
-
Klar, A.1
Wegener, R.2
-
17
-
-
41349116705
-
Theoretical analysis and simulations of the generalized Lotka-Volterra model
-
O. Malcai, O. Biham, S. Solomon, and P. Richmond, Theoretical analysis and simulations of the generalized Lotka-Volterra model, Phys. Rev. E 66:031102 (2002).
-
(2002)
Phys. Rev. E
, vol.66
, pp. 031102
-
-
Malcai, O.1
Biham, O.2
Solomon, S.3
Richmond, P.4
-
18
-
-
0002006546
-
The Pareto-Lévy law and the distribution of income
-
B.Mandelbrot, The Pareto-Lévy law and the distribution of income, Int. Economic Rev. 1:79-106 (1960).
-
(1960)
Int. Economic Rev.
, vol.1
, pp. 79-106
-
-
Mandelbrot, B.1
-
19
-
-
0027389754
-
Kinetics of a one-dimensional granular medium in the quasi-elastic limit
-
S. McNamara, and W. R. Young, Kinetics of a one-dimensional granular medium in the quasi-elastic limit, Phys. Fluids A 5:34-45 (1993).
-
(1993)
Phys. Fluids A
, vol.5
, pp. 34-45
-
-
McNamara, S.1
Young, W.R.2
-
21
-
-
0003733205
-
-
Rouge and Pichon, eds. (Lausanne and Paris)
-
V. Pareto, Cours d'Economie Politique, Rouge and Pichon, eds. (Lausanne and Paris, 1897).
-
(1897)
Cours D'Economie Politique
-
-
Pareto, V.1
-
22
-
-
0037426847
-
Econophysics: Two-phase behaviour of financial markets
-
cond-mat/0111349
-
V. Plerou, P. Gopikrishnan, and H. E. Stanley, Econophysics: two-phase behaviour of financial markets, Nature 421:130 (2003) (cond-mat/0111349).
-
(2003)
Nature
, vol.421
, pp. 130
-
-
Plerou, V.1
Gopikrishnan, P.2
Stanley, H.E.3
-
23
-
-
42749100055
-
Inelastically scattering particles and wealth distribution in an open economy
-
cond-mat/0311025
-
F. Slanina, Inelastically scattering particles and wealth distribution in an open economy, Phys. Rev. E 69:046102 (2004). (cond-mat/0311025).
-
(2004)
Phys. Rev. E
, vol.69
, pp. 046102
-
-
Slanina, F.1
-
24
-
-
21544455557
-
Stochastic Lotka-Volterra systems of competing auto-catalytic agents lead generically to truncated Pareto power wealth distribution, truncated Levy distribution of market returns, clustered volatility, booms and crashes
-
A.-P. N. Refenes, A. N. Burgess, and J. E. Moody, eds. (Kluwer Academic Publishers, Dordrecht)
-
S. Solomon, Stochastic Lotka-Volterra systems of competing auto-catalytic agents lead generically to truncated Pareto power wealth distribution, truncated Levy distribution of market returns, clustered volatility, booms and crashes, in Computational Finance 97, A.-P. N. Refenes, A. N. Burgess, and J. E. Moody, eds. (Kluwer Academic Publishers, Dordrecht 1998).
-
(1998)
Computational Finance
, vol.97
-
-
Solomon, S.1
-
25
-
-
0034549474
-
One-dimensional kinetic models of granular flows
-
G. Toscani, One-dimensional kinetic models of granular flows, RAIRO Modél Math. Anal. Numér. 34:1277-1292 (2000).
-
(2000)
RAIRO Modél Math. Anal. Numér.
, vol.34
, pp. 1277-1292
-
-
Toscani, G.1
|