-
2
-
-
33748082665
-
Mininum-cost coverage of points by disks
-
H. Alt, E. Arkin, H. Bronnimann, J. Erickson, S. Fekete, C. Knauer, J. Lenchner, J. Mitchell, and K. Whittlesey. Mininum-cost coverage of points by disks. Proceedings of the Annual Symposium on Computational Geometry, 2006, 449-458.
-
(2006)
Proceedings of the Annual Symposium on Computational Geometry
, pp. 449-458
-
-
Alt, H.1
Arkin, E.2
Bronnimann, H.3
Erickson, J.4
Fekete, S.5
Knauer, C.6
Lenchner, J.7
Mitchell, J.8
Whittlesey, K.9
-
4
-
-
0005369097
-
Approximation algorithms for geometric problems
-
D. Hochbaum Ed, PWS Publishing Company
-
M. Bern and D. Eppstein. Approximation algorithms for geometric problems. In D. Hochbaum (Ed.), Approximation algorithms for NP-hard problems, PWS Publishing Company, 1997, pages 296-345.
-
(1997)
Approximation algorithms for NP-hard problems
, pp. 296-345
-
-
Bern, M.1
Eppstein, D.2
-
5
-
-
27144540449
-
Geometric clustering to minimize the sum of cluster sizes
-
Proceedings of the European Symposium on Algorithms
-
V. Bilo, I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. Geometric clustering to minimize the sum of cluster sizes. Proceedings of the European Symposium on Algorithms, LNCS vol 3669, 460-471, 2005.
-
(2005)
LNCS
, vol.3669
, pp. 460-471
-
-
Bilo, V.1
Caragiannis, I.2
Kaklamanis, C.3
Kanellopoulos, P.4
-
8
-
-
1842457340
-
Approximation algorithms for clustering to minimize the sum of diameters
-
S. R. Doddi, M. V. Marathe, S. S. Ravi, D. S. Taylor, and P. Widmayer. Approximation algorithms for clustering to minimize the sum of diameters. Nordic Journal of Computing, Vol 7(3), 185-203, 2000.
-
(2000)
Nordic Journal of Computing
, vol.7
, Issue.3
, pp. 185-203
-
-
Doddi, S.R.1
Marathe, M.V.2
Ravi, S.S.3
Taylor, D.S.4
Widmayer, P.5
-
10
-
-
58449135779
-
On metric clustering to minimize the sum of radii
-
Manuscript
-
M. Gibson, G. Kanade, E. Krohn, I. Pirwani, and K. Varadarajan. On metric clustering to minimize the sum of radii. Manuscript, 2007.
-
(2007)
-
-
Gibson, M.1
Kanade, G.2
Krohn, E.3
Pirwani, I.4
Varadarajan, K.5
-
11
-
-
13844276646
-
Polynomial time approximation schems for base station coverage with minimum total radii
-
N. Lev-Tov and D. Peleg. Polynomial time approximation schems for base station coverage with minimum total radii. Computer Networks 47 (2005) 489-501.
-
(2005)
Computer Networks
, vol.47
, pp. 489-501
-
-
Lev-Tov, N.1
Peleg, D.2
-
12
-
-
0032667193
-
Guillotine subdivisions aprpoximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems
-
J. S. B. Mitchell. Guillotine subdivisions aprpoximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM Journal on Computing, 28(4): 1298-1309.
-
SIAM Journal on Computing
, vol.28
, Issue.4
, pp. 1298-1309
-
-
Mitchell, J.S.B.1
-
13
-
-
33747863923
-
How much precision is needed to compare two sums of square roots of integers?
-
J. Qian and C. A. Wang. How much precision is needed to compare two sums of square roots of integers?, Information Processing Letters 100 (2006): 194-198.
-
(2006)
Information Processing Letters
, vol.100
, pp. 194-198
-
-
Qian, J.1
Wang, C.A.2
|