-
4
-
-
0001773546
-
On the complexity of clustering problems
-
Lecture Notes in Economics and Mathematical Sciences
-
P. Brucker. On the complexity of clustering problems. Optimization and Operations Research, Lecture Notes in Economics and Mathematical Sciences, Vol. 157, pp. 45-54, 1978.
-
(1978)
Optimization and Operations Research
, vol.157
, pp. 45-54
-
-
Brucker, P.1
-
5
-
-
23844463259
-
A constant factor approximation algorithm for the k-median problem
-
M. Charikar, S. Guha, E. Tardos, and D. S. Shmoys. A constant factor approximation algorithm for the k-median problem. Journal of Computer and Systems Sciences, Vol. 65 (1), pp. 129-149, 2002.
-
(2002)
Journal of Computer and Systems Sciences
, vol.65
, Issue.1
, pp. 129-149
-
-
Charikar, M.1
Guha, S.2
Tardos, E.3
Shmoys, D.S.4
-
7
-
-
0000848826
-
Geometric clusterings
-
V. Capoyleas, G. Rote, and G. J. Woeginger. Geometric Clusterings. Journal of Algorithms, Vol. 12(2), pp. 341-356, 1991.
-
(1991)
Journal of Algorithms
, vol.12
, Issue.2
, pp. 341-356
-
-
Capoyleas, V.1
Rote, G.2
Woeginger, G.J.3
-
8
-
-
1842457340
-
Approximation algorithms for clustering to minimize the sum of diameters
-
S. R. Doddi, M. V. Marathe, S. S. Ravi, D. S. Taylor, and P. Widmayer. Approximation algorithms for clustering to minimize the sum of diameters. Nordic Journal of Computing, Vol. 7(3), pp. 185-203, 2000.
-
(2000)
Nordic Journal of Computing
, vol.7
, Issue.3
, pp. 185-203
-
-
Doddi, S.R.1
Marathe, M.V.2
Ravi, S.S.3
Taylor, D.S.4
Widmayer, P.5
-
10
-
-
0038784715
-
Approximation schemes for clustering problems
-
W. Fernandez de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation schemes for clustering problems. In Proc. of the 35th Annual ACM Symposium on Theory of Computing (STOC'03), pp. 50-58, 2003.
-
(2003)
Proc. of the 35th Annual ACM Symposium on Theory of Computing (STOC'03)
, pp. 50-58
-
-
De La Vega, W.F.1
Karpinski, M.2
Kenyon, C.3
Rabani, Y.4
-
12
-
-
0003780923
-
Minimum sum of diameters clustering
-
P. Hansen and B. Jaumard. Minimum sum of diameters clustering. Journal of Classification, Vol. 4, pp. 215-226, 1987.
-
(1987)
Journal of Classification
, vol.4
, pp. 215-226
-
-
Hansen, P.1
Jaumard, B.2
-
13
-
-
0000682161
-
Approximation algorithms for metric facility location and k-median problems using the primal-dual scheme and Lagrangian relaxation
-
K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and k-median problems using the primal-dual scheme and Lagrangian relaxation. Journal of the ACM, Vol. 48, pp. 274-296, 2001.
-
(2001)
Journal of the ACM
, vol.48
, pp. 274-296
-
-
Jain, K.1
Vazirani, V.V.2
-
14
-
-
13844276646
-
Polynomial time approximation schemes for base station coverage with minimum total radii
-
N. Lev-Tov and D. Peleg. Polynomial time approximation schemes for base station coverage with minimum total radii. Computer Networks, Vol. 47, pp. 489-501, 2005.
-
(2005)
Computer Networks
, vol.47
, pp. 489-501
-
-
Lev-Tov, N.1
Peleg, D.2
-
15
-
-
0345944191
-
Partitioning points and graphs to minimize the maximum or the sum of diameters
-
John Wiley and Sons
-
C. L. Monma and S. Suri. Partitioning points and graphs to minimize the maximum or the sum of diameters. Graph Theory, Combinatorics and Applications, John Wiley and Sons, pp. 880-912, 1991.
-
(1991)
Graph Theory, Combinatorics and Applications
, pp. 880-912
-
-
Monma, C.L.1
Suri, S.2
-
16
-
-
0037709221
-
Polynomial-time approximation schemes for geometric clustering problems
-
R. Ostrovsky and Y. Rabani. Polynomial-time approximation schemes for geometric clustering problems. Journal of the ACM, Vol. 49(2), pp. 139-156, 2002.
-
(2002)
Journal of the ACM
, vol.49
, Issue.2
, pp. 139-156
-
-
Ostrovsky, R.1
Rabani, Y.2
|