메뉴 건너뛰기




Volumn , Issue , 2008, Pages 43-50

Aggregation in confidence-based concept discovery for multi-relational data mining

Author keywords

Aggregate predicates; Data mining; ILP; MRDM

Indexed keywords

AGGREGATES; COMPUTERS; INFORMATION MANAGEMENT; INFORMATION SYSTEMS;

EID: 58449085819     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (21)
  • 1
    • 23044517681 scopus 로고    scopus 로고
    • Constraint-based Rule Mining in Large, Dense Databases
    • Bayardo, R. J., et al., 2000. Constraint-based Rule Mining in Large, Dense Databases. In Data Mining and Knowledge Discovery, Vol: 4(2-3), pp.217-240.
    • (2000) In Data Mining and Knowledge Discovery , vol.4 , Issue.2-3 , pp. 217-240
    • Bayardo, R.J.1
  • 2
    • 84957890121 scopus 로고    scopus 로고
    • Dehaspe, L. and Raedt, L.D., 1997. Mining Association Rules in Multiple Relations. In Proceedings of the 7th International Workshop on Inductive Logic Programming, London, UK, Springer-Verlag, pp. 125-132.
    • Dehaspe, L. and Raedt, L.D., 1997. Mining Association Rules in Multiple Relations. In Proceedings of the 7th International Workshop on Inductive Logic Programming, London, UK, Springer-Verlag, pp. 125-132.
  • 3
    • 6344279447 scopus 로고    scopus 로고
    • Multi-relational Data Mining: An Introduction
    • Dzeroski, S., 2003. Multi-relational Data Mining: An Introduction. In SIGKDD Explorations, Vol: 5(1), pp. 1-16.
    • (2003) In SIGKDD Explorations , vol.5 , Issue.1 , pp. 1-16
    • Dzeroski, S.1
  • 4
    • 38049156405 scopus 로고    scopus 로고
    • A Method for Multi-relational Classification Using Single and Multi-feature Aggregation Functions
    • Frank, R., et al., 2007. A Method for Multi-relational Classification Using Single and Multi-feature Aggregation Functions. In Proceedings of Principles of Knowledge Discovery in Databases (PKDD). pp. 430-437.
    • (2007) In Proceedings of Principles of Knowledge Discovery in Databases (PKDD) , pp. 430-437
    • Frank, R.1
  • 5
    • 32044446066 scopus 로고    scopus 로고
    • Getoor, L. and Grant, J., 2006. PRL: A Probabilistic Relational Language. In Machine Learning, 62(1-2), pp. 7-31.
    • Getoor, L. and Grant, J., 2006. PRL: A Probabilistic Relational Language. In Machine Learning, Vol: 62(1-2), pp. 7-31.
  • 10
    • 77951503082 scopus 로고    scopus 로고
    • Muggleton, S., 1995. Inverse Entailment and Progol. In New Generation Computing, Special Issue on Inductive Logic Programming, 13(3-4), pp.245-286.
    • Muggleton, S., 1995. Inverse Entailment and Progol. In New Generation Computing, Special Issue on Inductive Logic Programming, Vol: 13(3-4), pp.245-286.
  • 13
    • 22944446870 scopus 로고    scopus 로고
    • Perlich, C., and Provost, F., 2003. Aggregation-Based Feature Invention and Relational Concept Classes. In Proceedings of Knowledge Discovery in Databases (KDD). Washington. DC, pp. 167-176.
    • Perlich, C., and Provost, F., 2003. Aggregation-Based Feature Invention and Relational Concept Classes. In Proceedings of Knowledge Discovery in Databases (KDD). Washington. DC, pp. 167-176.
  • 14
    • 0001172265 scopus 로고
    • Learning Logical Definitions from Relations
    • Quinlan, J.R., 1990. Learning Logical Definitions from Relations. In Machine Learning. Vol: 5(3), pp.239-266.
    • (1990) In Machine Learning , vol.5 , Issue.3 , pp. 239-266
    • Quinlan, J.R.1
  • 16
    • 58449101442 scopus 로고    scopus 로고
    • The Role of Background Knowledge: Using a Problem from Chemistry to Examine the Performance of an ILP Program
    • Kluwer Academic Press
    • Srinivasan, A., et al., 1996. The Role of Background Knowledge: Using a Problem from Chemistry to Examine the Performance of an ILP Program, In Intelligent Data Analysis in Medicine and Pharmacology. Kluwer Academic Press.
    • (1996) Intelligent Data Analysis in Medicine and Pharmacology
    • Srinivasan, A.1
  • 17
    • 84957891317 scopus 로고    scopus 로고
    • Srinivasan, A., et al., 1997. Carcinogenesis Predictions using ILP. In Proceedings of the 7th International Workshop on Inductive Logic Programming. 1297., Springer-Verlag, pp.273-287.
    • Srinivasan, A., et al., 1997. Carcinogenesis Predictions using ILP. In Proceedings of the 7th International Workshop on Inductive Logic Programming. Vol: 1297., Springer-Verlag, pp.273-287.
  • 21
    • 2442458705 scopus 로고    scopus 로고
    • Crossmine: Efficient Classification Accross Multiple Database Relations
    • Yin, X., et al., 2004. Crossmine: Efficient Classification Accross Multiple Database Relations. In : Proceedings of ICDE.
    • (2004) Proceedings of ICDE
    • Yin, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.