-
1
-
-
23044517681
-
Constraint-based Rule Mining in Large, Dense Databases
-
Bayardo, R. J., et al., 2000. Constraint-based Rule Mining in Large, Dense Databases. In Data Mining and Knowledge Discovery, Vol: 4(2-3), pp.217-240.
-
(2000)
In Data Mining and Knowledge Discovery
, vol.4
, Issue.2-3
, pp. 217-240
-
-
Bayardo, R.J.1
-
2
-
-
84957890121
-
-
Dehaspe, L. and Raedt, L.D., 1997. Mining Association Rules in Multiple Relations. In Proceedings of the 7th International Workshop on Inductive Logic Programming, London, UK, Springer-Verlag, pp. 125-132.
-
Dehaspe, L. and Raedt, L.D., 1997. Mining Association Rules in Multiple Relations. In Proceedings of the 7th International Workshop on Inductive Logic Programming, London, UK, Springer-Verlag, pp. 125-132.
-
-
-
-
3
-
-
6344279447
-
Multi-relational Data Mining: An Introduction
-
Dzeroski, S., 2003. Multi-relational Data Mining: An Introduction. In SIGKDD Explorations, Vol: 5(1), pp. 1-16.
-
(2003)
In SIGKDD Explorations
, vol.5
, Issue.1
, pp. 1-16
-
-
Dzeroski, S.1
-
4
-
-
38049156405
-
A Method for Multi-relational Classification Using Single and Multi-feature Aggregation Functions
-
Frank, R., et al., 2007. A Method for Multi-relational Classification Using Single and Multi-feature Aggregation Functions. In Proceedings of Principles of Knowledge Discovery in Databases (PKDD). pp. 430-437.
-
(2007)
In Proceedings of Principles of Knowledge Discovery in Databases (PKDD)
, pp. 430-437
-
-
Frank, R.1
-
5
-
-
32044446066
-
-
Getoor, L. and Grant, J., 2006. PRL: A Probabilistic Relational Language. In Machine Learning, 62(1-2), pp. 7-31.
-
Getoor, L. and Grant, J., 2006. PRL: A Probabilistic Relational Language. In Machine Learning, Vol: 62(1-2), pp. 7-31.
-
-
-
-
10
-
-
77951503082
-
-
Muggleton, S., 1995. Inverse Entailment and Progol. In New Generation Computing, Special Issue on Inductive Logic Programming, 13(3-4), pp.245-286.
-
Muggleton, S., 1995. Inverse Entailment and Progol. In New Generation Computing, Special Issue on Inductive Logic Programming, Vol: 13(3-4), pp.245-286.
-
-
-
-
13
-
-
22944446870
-
-
Perlich, C., and Provost, F., 2003. Aggregation-Based Feature Invention and Relational Concept Classes. In Proceedings of Knowledge Discovery in Databases (KDD). Washington. DC, pp. 167-176.
-
Perlich, C., and Provost, F., 2003. Aggregation-Based Feature Invention and Relational Concept Classes. In Proceedings of Knowledge Discovery in Databases (KDD). Washington. DC, pp. 167-176.
-
-
-
-
14
-
-
0001172265
-
Learning Logical Definitions from Relations
-
Quinlan, J.R., 1990. Learning Logical Definitions from Relations. In Machine Learning. Vol: 5(3), pp.239-266.
-
(1990)
In Machine Learning
, vol.5
, Issue.3
, pp. 239-266
-
-
Quinlan, J.R.1
-
16
-
-
58449101442
-
The Role of Background Knowledge: Using a Problem from Chemistry to Examine the Performance of an ILP Program
-
Kluwer Academic Press
-
Srinivasan, A., et al., 1996. The Role of Background Knowledge: Using a Problem from Chemistry to Examine the Performance of an ILP Program, In Intelligent Data Analysis in Medicine and Pharmacology. Kluwer Academic Press.
-
(1996)
Intelligent Data Analysis in Medicine and Pharmacology
-
-
Srinivasan, A.1
-
17
-
-
84957891317
-
-
Srinivasan, A., et al., 1997. Carcinogenesis Predictions using ILP. In Proceedings of the 7th International Workshop on Inductive Logic Programming. 1297., Springer-Verlag, pp.273-287.
-
Srinivasan, A., et al., 1997. Carcinogenesis Predictions using ILP. In Proceedings of the 7th International Workshop on Inductive Logic Programming. Vol: 1297., Springer-Verlag, pp.273-287.
-
-
-
-
21
-
-
2442458705
-
Crossmine: Efficient Classification Accross Multiple Database Relations
-
Yin, X., et al., 2004. Crossmine: Efficient Classification Accross Multiple Database Relations. In : Proceedings of ICDE.
-
(2004)
Proceedings of ICDE
-
-
Yin, X.1
|