메뉴 건너뛰기




Volumn 36, Issue 3 PART 2, 2009, Pages 6256-6260

Discovering patterns of missing data in survey databases: An application of rough sets

Author keywords

Association rules; Data mining; Knowledge discovery; Missing values; Rough sets; Rule induction; Survey

Indexed keywords

ASSOCIATION RULES; DATABASE SYSTEMS; ROUGH SET THEORY; SURVEYING; SURVEYS;

EID: 58349111842     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.07.010     Document Type: Article
Times cited : (44)

References (23)
  • 1
    • 0242498488 scopus 로고    scopus 로고
    • An analysis of four missing data treatment methods for supervised learning
    • Batista G., and Monard M. An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence 17 5/6 (2003) 519-533
    • (2003) Applied Artificial Intelligence , vol.17 , Issue.5-6 , pp. 519-533
    • Batista, G.1    Monard, M.2
  • 4
    • 0035340352 scopus 로고    scopus 로고
    • Mining association rules procedure to support on-line recommendation by customers and products fragmentation
    • Changchien S.W., and Lu T.C. Mining association rules procedure to support on-line recommendation by customers and products fragmentation. Expert Systems with Applications 20 4 (2001) 325-335
    • (2001) Expert Systems with Applications , vol.20 , Issue.4 , pp. 325-335
    • Changchien, S.W.1    Lu, T.C.2
  • 6
    • 0036567302 scopus 로고    scopus 로고
    • Learning rules from incomplete training examples by rough sets
    • Hong T.P., Tseng L.H., and Wang S.L. Learning rules from incomplete training examples by rough sets. Expert Systems with Applications 22 4 (2002) 285-293
    • (2002) Expert Systems with Applications , vol.22 , Issue.4 , pp. 285-293
    • Hong, T.P.1    Tseng, L.H.2    Wang, S.L.3
  • 7
    • 37349011312 scopus 로고    scopus 로고
    • Learning cross-level certain and possible rules by rough sets
    • Hong T.P., Lin C.E., Lin J.H., and Wang S.L. Learning cross-level certain and possible rules by rough sets. Expert Systems with Applications 34 3 (2008) 1698-1706
    • (2008) Expert Systems with Applications , vol.34 , Issue.3 , pp. 1698-1706
    • Hong, T.P.1    Lin, C.E.2    Lin, J.H.3    Wang, S.L.4
  • 9
    • 0030283822 scopus 로고    scopus 로고
    • A rough logic based on incomplete information and its application
    • Nakamura A. A rough logic based on incomplete information and its application. International Journal of Approximate Reasoning 15 (1996) 367-378
    • (1996) International Journal of Approximate Reasoning , vol.15 , pp. 367-378
    • Nakamura, A.1
  • 10
    • 58349110020 scopus 로고    scopus 로고
    • Ohrn, A. (1999). Discernibility and rough sets in medicine: tools and applications, Doctoral Thesis, Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway. Accessed 03.01.08.
    • Ohrn, A. (1999). Discernibility and rough sets in medicine: tools and applications, Doctoral Thesis, Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway. Accessed 03.01.08.
  • 11
    • 0033956372 scopus 로고    scopus 로고
    • Rough sets: A knowledge discovery technique for multifactorial medical outcomes
    • Ohrn A., and Rowland T. Rough sets: A knowledge discovery technique for multifactorial medical outcomes. American Journal of Physical Medicine and Rehabilitation 79 1 (2000) 100-108
    • (2000) American Journal of Physical Medicine and Rehabilitation , vol.79 , Issue.1 , pp. 100-108
    • Ohrn, A.1    Rowland, T.2
  • 12
    • 37249021698 scopus 로고
    • Representation of nondeterministic information
    • Orlowska E., and Pawlak Z. Representation of nondeterministic information. Theoretical Computer Science 29 (1984) 27-39
    • (1984) Theoretical Computer Science , vol.29 , pp. 27-39
    • Orlowska, E.1    Pawlak, Z.2
  • 16
    • 0034240833 scopus 로고    scopus 로고
    • Rough sets and decision analysis
    • Pawlak Z. Rough sets and decision analysis. INFOR 38 3 (2000) 132-144
    • (2000) INFOR , vol.38 , Issue.3 , pp. 132-144
    • Pawlak, Z.1
  • 17
    • 58349103428 scopus 로고    scopus 로고
    • ROSETTA. (2008). A rough set toolkit for analysis of data, V1.4.41, Knowledge Systems Group at NTNU, Norway, and the Logic Group at Warsaw University, Poland. Accessed 03.01.08.
    • ROSETTA. (2008). A rough set toolkit for analysis of data, V1.4.41, Knowledge Systems Group at NTNU, Norway, and the Logic Group at Warsaw University, Poland. Accessed 03.01.08.
  • 18
    • 0242544037 scopus 로고    scopus 로고
    • A pre-processing method to deal with missing values by integrating clustering and regression techniques
    • Tseng S., Wang K., and Lee C. A pre-processing method to deal with missing values by integrating clustering and regression techniques. Applied Artificial Intelligence 17 5/6 (2003) 535-544
    • (2003) Applied Artificial Intelligence , vol.17 , Issue.5-6 , pp. 535-544
    • Tseng, S.1    Wang, K.2    Lee, C.3
  • 19
    • 0037316513 scopus 로고    scopus 로고
    • Automated extraction of hierarchical decision rules from clinical databases from rough set model
    • Tsumoto S. Automated extraction of hierarchical decision rules from clinical databases from rough set model. Expert Systems with Applications 24 2 (2003) 189-197
    • (2003) Expert Systems with Applications , vol.24 , Issue.2 , pp. 189-197
    • Tsumoto, S.1
  • 20
    • 58349090158 scopus 로고    scopus 로고
    • UCI. (2008). UCI machine learning repository, adult database. Accessed 03.01.08.
    • UCI. (2008). UCI machine learning repository, adult database. Accessed 03.01.08.
  • 21
    • 16244416222 scopus 로고    scopus 로고
    • On acquiring classification knowledge from noisy data based on rough set
    • Wang F.H. On acquiring classification knowledge from noisy data based on rough set. Expert Systems with Applications 29 1 (2005) 49-64
    • (2005) Expert Systems with Applications , vol.29 , Issue.1 , pp. 49-64
    • Wang, F.H.1
  • 23
    • 42049103669 scopus 로고    scopus 로고
    • A data mining approach to assessing the extent of damage of missing values in survey
    • Wang H., and Wang S. A data mining approach to assessing the extent of damage of missing values in survey. International Journal of Business Intelligence and Data Mining 2 3 (2007) 249-260
    • (2007) International Journal of Business Intelligence and Data Mining , vol.2 , Issue.3 , pp. 249-260
    • Wang, H.1    Wang, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.