메뉴 건너뛰기




Volumn 87, Issue 7, 2008, Pages 851-863

Existence results for boundary value problems with non-linear fractional differential equations

Author keywords

26A33; Boundary value problem; Caputo fractional derivative; Existence; Fixed point; Fractional integral; Integral conditions; Uniqueness

Indexed keywords


EID: 58249117112     PISSN: 15226514     EISSN: 15497879     Source Type: Journal    
DOI: 10.1080/00036810802307579     Document Type: Article
Times cited : (210)

References (42)
  • 1
    • 0002795136 scopus 로고    scopus 로고
    • On the solution of non-linear fractional order differential equations used in the modeling of viscoplasticity
    • Keil F., Mackens W., Voss H., Werther J., (eds), Heidelberg: Springer-Verlag, and,. Edited by
    • Diethelm, K, and Freed, AD. 1999. “ On the solution of non-linear fractional order differential equations used in the modeling of viscoplasticity ”. In Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Edited by: Keil, F, Mackens, W, Voss, H, and Werther, J. 217–224. Heidelberg: Springer-Verlag.
    • (1999) Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties , pp. 217-224
    • Diethelm, K.1    Freed, A.D.2
  • 3
    • 0028878140 scopus 로고
    • A fractional calculus approach of self-similar protein dynamics
    • Glockle, WG, and Nonnenmacher, TF. 1995. A fractional calculus approach of self-similar protein dynamics. Biophys. J., 68: 46–53.
    • (1995) Biophys. J. , vol.68 , pp. 46-53
    • Glockle, W.G.1    Nonnenmacher, T.F.2
  • 5
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statistical mechanics
    • Carpinteri A., Mainardi F., (eds), Wien: Springer-Verlag,. Edited by
    • Mainardi, F. 1997. “ Fractional calculus: Some basic problems in continuum and statistical mechanics ”. In Fractals and Fractional Calculus in Continuum Mechanics, Edited by: Carpinteri, A, and Mainardi, F. 291–348. Wien: Springer-Verlag.
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 6
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • Metzler, F. 1995. Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys., 103: 7180–7186.
    • (1995) J. Chem. Phys. , vol.103 , pp. 7180-7186
    • Metzler, F.1
  • 8
    • 77956684069 scopus 로고    scopus 로고
    • Theory and Applications of Fractional Differential Equations
    • Amsterdam: Elsevier Science B.V., and,. In
    • Kilbas, AA, Srivastava, HM, and Trujillo, JJ. 2006. “ Theory and Applications of Fractional Differential Equations ”. In North-Holland Mathematics Studies, Vol. 204, Amsterdam: Elsevier Science B.V.
    • (2006) North-Holland Mathematics Studies , vol.204
    • Kilbas, A.A.1    Srivastava, H.M.2    Trujillo, J.J.3
  • 10
  • 11
    • 42649131330 scopus 로고    scopus 로고
    • Boundary value problems for differential inclusions with fractional order
    • Agarwal, RP, Benchohra, M, and Hamani, S. 2008. Boundary value problems for differential inclusions with fractional order. Adv. Stud. Contemp. Math, 16: 181–196.
    • (2008) Adv. Stud. Contemp. Math , vol.16 , pp. 181-196
    • Agarwal, R.P.1    Benchohra, M.2    Hamani, S.3
  • 12
    • 70350087351 scopus 로고    scopus 로고
    • Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative
    • to appear
    • Benchohra, M, and Hamani, S. Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative. Topol. Meth. Nonlinear Anal, (to appear)
    • Topol. Meth. Nonlinear Anal
    • Benchohra, M.1    Hamani, S.2
  • 13
    • 0030528474 scopus 로고    scopus 로고
    • Existence and uniqueness for a non-linear fractional differential equation
    • Delbosco, D, and Rodino, L. 1996. Existence and uniqueness for a non-linear fractional differential equation. J. Math. Anal. Appl., 204: 609–625.
    • (1996) J. Math. Anal. Appl. , vol.204 , pp. 609-625
    • Delbosco, D.1    Rodino, L.2
  • 14
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • Diethelm, K, and Ford, NJ. 2002. Analysis of fractional differential equations. J. Math. Anal. Appl., 265: 229–248.
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 15
    • 0043044718 scopus 로고    scopus 로고
    • Numerical solution of fractional order differential equations by extrapolation
    • Diethelm, K, and Walz, G. 1997. Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms, 16: 231–253.
    • (1997) Numer. Algorithms , vol.16 , pp. 231-253
    • Diethelm, K.1    Walz, G.2
  • 16
    • 0038086852 scopus 로고
    • Fractional order evolution equations
    • El-Sayed, AMA. 1995. Fractional order evolution equations. J. Fract. Calc., 7: 89–100.
    • (1995) J. Fract. Calc. , vol.7 , pp. 89-100
    • El-Sayed, A.M.A.1
  • 17
    • 0030531939 scopus 로고    scopus 로고
    • Fractional order diffusion-wave equations
    • El-Sayed, AMA. 1996. Fractional order diffusion-wave equations. Intern. J. Theo. Physics, 35: 311–322.
    • (1996) Intern. J. Theo. Physics , vol.35 , pp. 311-322
    • El-Sayed, A.M.A.1
  • 18
    • 0032115069 scopus 로고    scopus 로고
    • Nonlinear functional differential equations of arbitrary orders
    • El-Sayed, AMA. 1998. Nonlinear functional differential equations of arbitrary orders. Nonlinear Anal., 33: 181–186.
    • (1998) Nonlinear Anal. , vol.33 , pp. 181-186
    • El-Sayed, A.M.A.1
  • 19
    • 58249115464 scopus 로고    scopus 로고
    • Positive solutions of a boundary value problem for a non-linear fractional differential equation
    • Kaufmann, ER, and Mboumi, E. 2007. Positive solutions of a boundary value problem for a non-linear fractional differential equation. Electron. J. Qual. Theory Differ. Equ., 3: 11
    • (2007) Electron. J. Qual. Theory Differ. Equ. , vol.3 , pp. 11
    • Kaufmann, E.R.1    Mboumi, E.2
  • 20
    • 17444382726 scopus 로고    scopus 로고
    • Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions
    • Kilbas, AA, and Marzan, SA. 2005. Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differ. Equ., 41: 84–89.
    • (2005) Differ. Equ. , vol.41 , pp. 84-89
    • Kilbas, A.A.1    Marzan, S.A.2
  • 21
    • 34848921672 scopus 로고    scopus 로고
    • Some comparison results for integro-fractional differential inequalities
    • Momani, SM, and Hadid, SB. 2003. Some comparison results for integro-fractional differential inequalities. J. Fract. Calc., 24: 37–44.
    • (2003) J. Fract. Calc. , vol.24 , pp. 37-44
    • Momani, S.M.1    Hadid, S.B.2
  • 22
    • 17844385541 scopus 로고    scopus 로고
    • Some analytical properties of solutions of differential equations of noninteger order
    • Momani, SM, Hadid, SB, and Alawenh, ZM. 2004. Some analytical properties of solutions of differential equations of noninteger order. Int. J. Math. Math. Sci., 2004: 697–701.
    • (2004) Int. J. Math. Math. Sci. , vol.2004 , pp. 697-701
    • Momani, S.M.1    Hadid, S.B.2    Alawenh, Z.M.3
  • 23
    • 0036650890 scopus 로고    scopus 로고
    • Analogue realizations of fractional-order controllers. Fractional order calculus and its applications
    • Podlubny, I. 2002. Analogue realizations of fractional-order controllers. Fractional order calculus and its applications. Nonlinear Dynam., 29: 281–296.
    • (2002) Nonlinear Dynam. , vol.29 , pp. 281-296
    • Podlubny, I.1
  • 24
    • 23844442815 scopus 로고    scopus 로고
    • Existence of fractional differential equations
    • Yu, C, and Gao, G. 2005. Existence of fractional differential equations. J. Math. Anal. Appl., 310: 26–29.
    • (2005) J. Math. Anal. Appl. , vol.310 , pp. 26-29
    • Yu, C.1    Gao, G.2
  • 25
    • 53949111458 scopus 로고    scopus 로고
    • Basic theory of fractional differential equations
    • Lakshmikantham, V, and Vatsala, AS. 2008. Basic theory of fractional differential equations. Nonlinear Anal., 69: 2677–2681.
    • (2008) Nonlinear Anal. , vol.69 , pp. 2677-2681
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 26
    • 37349014877 scopus 로고    scopus 로고
    • Theory of fractional differential inequalities and applications
    • Lakshmikantham, V, and Vatsala, AS. 2007. Theory of fractional differential inequalities and applications. Commun. Appl. Anal., 11: 395–402.
    • (2007) Commun. Appl. Anal. , vol.11 , pp. 395-402
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 27
    • 45049084850 scopus 로고    scopus 로고
    • General uniqueness and monotone iterative technique for fractional differential equations
    • Lakshmikantham, V, and Vatsala, AS. 2008. General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Letters, 21: 828–834.
    • (2008) Appl. Math. Letters , vol.21 , pp. 828-834
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 28
    • 38149134242 scopus 로고    scopus 로고
    • Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces
    • Belarbi, A, Benchohra, M, and Ouahab, A. 2006. Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces. Appl. Anal., 85: 1459–1470.
    • (2006) Appl. Anal. , vol.85 , pp. 1459-1470
    • Belarbi, A.1    Benchohra, M.2    Ouahab, A.3
  • 29
    • 34848916710 scopus 로고    scopus 로고
    • Existence results for fractional order functional differential equations with infinite delay
    • Benchohra, M. 2008. Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl., 338: 1340–1350.
    • (2008) J. Math. Anal. Appl. , vol.338 , pp. 1340-1350
    • Benchohra, M.1
  • 30
    • 37349041073 scopus 로고    scopus 로고
    • Perturbed functional differential equations with fractional order
    • Belarbi, A. 2007. Perturbed functional differential equations with fractional order. Commun. Appl. Anal., 11: 429–440.
    • (2007) Commun. Appl. Anal. , vol.11 , pp. 429-440
    • Belarbi, A.1
  • 31
    • 58249103422 scopus 로고    scopus 로고
    • Boundary value problems for differential equations with fractional order
    • Benchohra, M, Hamani, S, and Ntouyas, SK. 2008. Boundary value problems for differential equations with fractional order. Surv. Math. Appl., 3: 1–12.
    • (2008) Surv. Math. Appl. , vol.3 , pp. 1-12
    • Benchohra, M.1    Hamani, S.2    Ntouyas, S.K.3
  • 32
    • 77949268160 scopus 로고    scopus 로고
    • Existence theory for perturbed boundary value problems with integral boundary conditions
    • Belarbi, A, Benchohra, M, and Dhage, BC. 2006. Existence theory for perturbed boundary value problems with integral boundary conditions. Georgian Math. J., 13: 215–228.
    • (2006) Georgian Math. J. , vol.13 , pp. 215-228
    • Belarbi, A.1    Benchohra, M.2    Dhage, B.C.3
  • 34
    • 67651193694 scopus 로고    scopus 로고
    • The method of upper and lower solutions for second order differential inclusions with integral boundary conditions
    • to appear
    • Benchohra, M, Hamani, S, and Nieto, JJ. The method of upper and lower solutions for second order differential inclusions with integral boundary conditions. Rocky Mountain J. Math, (to appear)
    • Rocky Mountain J. Math
    • Benchohra, M.1    Hamani, S.2    Nieto, J.J.3
  • 35
    • 33745869026 scopus 로고    scopus 로고
    • Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
    • Heymans, N, and Podlubny, I. 2006. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta., 45: 765–772.
    • (2006) Rheologica Acta. , vol.45 , pp. 765-772
    • Heymans, N.1    Podlubny, I.2
  • 36
    • 0242354999 scopus 로고    scopus 로고
    • Geometric and physical interpretation of fractional integration and fractional differentiation
    • Podlubny, I. 2002. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calculus Appl. Anal., 5: 367–386.
    • (2002) Fract. Calculus Appl. Anal. , vol.5 , pp. 367-386
    • Podlubny, I.1
  • 37
    • 77949273090 scopus 로고    scopus 로고
    • Analysis of age structured host-parasitoid model
    • Blayneh, KW. 2002. Analysis of age structured host-parasitoid model. Far East J. Dyn. Syst., 4: 125–145.
    • (2002) Far East J. Dyn. Syst. , vol.4 , pp. 125-145
    • Blayneh, K.W.1
  • 38
    • 46549103408 scopus 로고
    • Cellular systems and aging models
    • Adomian, G, and Adomian, GE. 1985. Cellular systems and aging models. Comput. Math. Appl., 11: 283–291.
    • (1985) Comput. Math. Appl. , vol.11 , pp. 283-291
    • Adomian, G.1    Adomian, G.E.2
  • 40
    • 33645152919 scopus 로고    scopus 로고
    • Positive solutions for boundary-value problems of non-linear fractional differential equations
    • Zhang, S. 2006. Positive solutions for boundary-value problems of non-linear fractional differential equations. Electron. J. Differ. Equ., 36: 1–12.
    • (2006) Electron. J. Differ. Equ. , vol.36 , pp. 1-12
    • Zhang, S.1
  • 42
    • 0040676467 scopus 로고    scopus 로고
    • A fixed point theorem of Krasnoselskii-Schaefer type
    • Burton, TA, and Kirk, C. 1998. A fixed point theorem of Krasnoselskii-Schaefer type. Math. Nachr., 189: 23–31.
    • (1998) Math. Nachr. , vol.189 , pp. 23-31
    • Burton, T.A.1    Kirk, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.