메뉴 건너뛰기




Volumn 47, Issue 1, 2008, Pages 181-203

B-series analysis of stochastic Runge-Kutta methods that use an iterative scheme to compute their internal stage values

Author keywords

Composite method; Growth functions; Internal stage values; Iterative scheme; Newton's method; Order; Stochastic b series; Stochastic differential equation; Stochastic Runge Kutta method; Strong approximation; Weak approximation

Indexed keywords

B-SERIES; COMPOSITE METHOD; GROWTH FUNCTIONS; ITERATIVE SCHEMES; NEWTON'S METHODS; STOCHASTIC DIFFERENTIAL EQUATIONS; STRONG APPROXIMATION; WEAK APPROXIMATION;

EID: 58249088540     PISSN: 00361429     EISSN: None     Source Type: Journal    
DOI: 10.1137/070704307     Document Type: Article
Times cited : (58)

References (32)
  • 1
    • 0030286423 scopus 로고    scopus 로고
    • High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations
    • Special issue celebrating the centenary of Rungo-Kutta methods.
    • K. BURRAGE AND P.M. BURRAGE, High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Appl. Numer. Math., 22 (1996), pp. 81-101. Special issue celebrating the centenary of Rungo-Kutta methods.
    • (1996) Appl. Numer. Math. , vol.22 , pp. 81-101
    • Burrage, K.1    Burrage, P.M.2
  • 2
    • 0034547253 scopus 로고    scopus 로고
    • Order conditions of stochastic Runge-Kutta methods by B-series
    • K. BURRAGE AND P. M. BURRAGE, Order conditions of stochastic Runge-Kutta methods by B-series, SIAM J. Numer. Anal., 38 (2000), pp. 1626-1646.
    • (2000) SIAM J. Numer. Anal. , vol.38 , pp. 1626-1646
    • Burrage, K.1    Burrage, P.M.2
  • 3
    • 0141534425 scopus 로고    scopus 로고
    • Predictor-corrector methods of Runge-Kutta type for stochastic differential equations
    • K. BURRAGE AND T. H. TIAN, Predictor-corrector methods of Runge-Kutta type for stochastic differential equations, SIAM J. Numer. Anal., 40 (2002), pp. 1516-1537.
    • (2002) SIAM J. Numer. Anal. , vol.40 , pp. 1516-1537
    • Burrage, K.1    Tian, T.H.2
  • 4
    • 4043136017 scopus 로고    scopus 로고
    • Implicit stochastic Runge-Kutta methods for stochastic differential equations
    • K. BURRAGE AND T. H. TIAN, Implicit stochastic Runge-Kutta methods for stochastic differential equations, BIT, 44 (2004), pp. 21-39.
    • (2004) BIT , vol.44 , pp. 21-39
    • Burrage, K.1    Tian, T.H.2
  • 6
    • 0039179843 scopus 로고
    • Coefficients for the study of Runge-Kutta integration processes
    • J. C. BUTCHER, Coefficients for the study of Runge-Kutta integration processes, J. Austral. Math. Soc, 3 (1963), pp. 185-201.
    • (1963) J. Austral. Math. Soc , vol.3 , pp. 185-201
    • Butcher, J.C.1
  • 7
    • 58249086593 scopus 로고    scopus 로고
    • Diagonally drift-implicit Runge-Kutta methods of weak order one and two for Itô SDEs and stability analysis
    • in press, doi:10.1016/j.apnum.2008.03.011.
    • K. DEBRABANT AND A. RÖßLER, Diagonally drift-implicit Runge-Kutta methods of weak order one and two for Itô SDEs and stability analysis, Appl. Numer. Math., 2008, in press, doi:10.1016/j.apnum.2008.03.011.
    • (2008) Appl. Numer. Math.
    • Debrabant, K.1    Rößler, A.2
  • 8
    • 58249084804 scopus 로고    scopus 로고
    • Families of efficient second order Runge-Kutta methods for the weak approximation of Itô stochastic differential equations
    • in press, doi:10.1016/j.apnum.2008.03.012.
    • K. DEBRABANT AND A. RÖßLER, Families of efficient second order Runge-Kutta methods for the weak approximation of Itô stochastic differential equations, Appl. Numer. Math., 2008, in press, doi:10.1016/j.apnum. 2008.03.012.
    • (2008) Appl. Numer. Math.
    • Debrabant, K.1    Rößler, A.2
  • 9
    • 40649101463 scopus 로고    scopus 로고
    • Classification of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations
    • K. DEBRABANT AND A. RÖßLER, Classification of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations, Math. Comput. Simulation, 77 (2008), pp. 408-420.
    • (2008) Math. Comput. Simulation , vol.77 , pp. 408-420
    • Debrabant, K.1    Rößler, A.2
  • 10
    • 0003692170 scopus 로고
    • Introduction to stochastic differential equations, monographs and textbooks in pure
    • Marcel Dokkor Inc., Now York
    • T. C. GARD, Introduction to stochastic differential equations, Monographs and Textbooks in Pure Appl. Math. 114, Marcel Dokkor Inc., Now York, 1988.
    • (1988) Appl. Math. , vol.114
    • Gard, T.C.1
  • 12
    • 0034436594 scopus 로고    scopus 로고
    • Mean-square and asymptotic stability of the stochastic theta method
    • D. J. HIGHAM, Mean-square and asymptotic stability of the stochastic theta method, SIAM J. Numer. Anal., 38 (2000), pp. 753-769.
    • (2000) SIAM J. Numer. Anal. , vol.38 , pp. 753-769
    • Higham, D.J.1
  • 13
    • 0028524312 scopus 로고
    • The use of Butcher series in the analysis of Newton-like iterations in Runge-Kutta formulas
    • International Conference on Scientific Computation and Differential Equations (Auckland, 1993).
    • K. R. JACKSON, A. KVÆRNØ, AND S. P. NØRSETT, The use of Butcher series in the analysis of Newton-like iterations in Runge-Kutta formulas, Appl. Numer. Math., 15 (1994), pp. 341-356. International Conference on Scientific Computation and Differential Equations (Auckland, 1993).
    • (1994) Appl. Numer. Math. , vol.15 , pp. 341-356
    • Jackson, K.R.1    Kværnø, A.2    Nørsett, S.P.3
  • 17
    • 43049139932 scopus 로고    scopus 로고
    • Weak first- Or second-order implicit Runge-Kutta methods for stochastic differential equations with a scalar Wiener process
    • Y. KOMORI, Weak first- or second-order implicit Runge-Kutta methods for stochastic differential equations with a scalar Wiener process, J. Comput. Appl. Math., 217 (2008), pp. 166-179.
    • (2008) J. Comput. Appl. Math. , vol.217 , pp. 166-179
    • Komori, Y.1
  • 18
    • 33846257307 scopus 로고    scopus 로고
    • Multi-colored rooted tree analysis of the weak order conditions of a stochastic Runge-Kutta family
    • Y. KOMORI, Multi-colored rooted tree analysis of the weak order conditions of a stochastic Runge-Kutta family, Appl. Numer. Math., 57 (2007), pp. 147-165.
    • (2007) Appl. Numer. Math. , vol.57 , pp. 147-165
    • Komori, Y.1
  • 19
    • 34249278816 scopus 로고    scopus 로고
    • Weak second-order stochastic Runge-Kutta methods for non-commutative stochastic differential equations
    • Y. KOMORI, Weak second-order stochastic Runge-Kutta methods for non-commutative stochastic differential equations, J. Comput. Appl. Math., 206 (2007), pp. 158-173.
    • (2007) J. Comput. Appl. Math. , vol.206 , pp. 158-173
    • Komori, Y.1
  • 21
    • 0034899603 scopus 로고    scopus 로고
    • Second order weak Runge-Kutta type methods of Itô equations
    • V. MAOKEVIČIUS AND J. NAVIKAS, Second order weak Runge-Kutta type methods of Itô equations, Math. Comput. Simulation, 57 (2001), pp. 29-34.
    • (2001) Math. Comput. Simulation , vol.57 , pp. 29-34
    • Maokevičius, V.1    Navikas, J.2
  • 23
    • 0141869053 scopus 로고    scopus 로고
    • Numerical methods for stochastic systems preserving symplectic structure
    • G. N. MILSTEIN, Y. M. REPIN, AND M. V. TRETYAKOV, Numerical methods for stochastic systems preserving symplectic structure, SIAM J. Numer. Anal., 40 (2003), pp. 1583-1604.
    • (2003) SIAM J. Numer. Anal. , vol.40 , pp. 1583-1604
    • Milstein, G.N.1    Repin, Y.M.2    Tretyakov, M.V.3
  • 24
    • 0343359810 scopus 로고
    • Order conditions for Rosenbrock type methods
    • S. P. NØRSETT AND A. WOLFBRANDT, Order conditions for Rosenbrock type methods, Numer. Math., 32 (1979), pp. 1-15.
    • (1979) Numer. Math. , vol.32 , pp. 1-15
    • Nørsett, S.P.1    Wolfbrandt, A.2
  • 25
    • 0000743341 scopus 로고    scopus 로고
    • A general implicit splitting for stabilizing numerical simulations of Itô stochastic differential equations
    • W. P. PETERSEN, A general implicit splitting for stabilizing numerical simulations of Itô stochastic differential equations, SIAM J. Numer. Anal., 35 (1998), pp. 1439-1451.
    • (1998) SIAM J. Numer. Anal. , vol.35 , pp. 1439-1451
    • Petersen, W.P.1
  • 26
    • 8344274262 scopus 로고    scopus 로고
    • Stochastic Taylor expansions for the expectation of functional of diffusion processes
    • A. RÖßLER, Stochastic Taylor expansions for the expectation of functional of diffusion processes, Stoch. Anal. Appl., 22 (2004), pp. 1553-1576.
    • (2004) Stoch. Anal. Appl. , vol.22 , pp. 1553-1576
    • Rößler, A.1
  • 27
    • 30444461217 scopus 로고    scopus 로고
    • Rooted tree analysis for order conditions of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations
    • A. RÖßLER, Rooted tree analysis for order conditions of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations, Stoch. Anal. Appl., 24 (2006), pp. 97-134.
    • (2006) Stoch. Anal. Appl. , vol.24 , pp. 97-134
    • Rößler, A.1
  • 32
    • 0037246360 scopus 로고    scopus 로고
    • Weak second order conditions for stochastic Runge-Kutta methods
    • A. TOCINO AND J. VIGO-AGUIAR, Weak second order conditions for stochastic Runge-Kutta methods, SIAM J. Sci. Comput., 24 (2002), pp. 507-523.
    • (2002) SIAM J. Sci. Comput. , vol.24 , pp. 507-523
    • Tocino, A.1    Vigo-Aguiar, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.