메뉴 건너뛰기




Volumn 217, Issue 1, 2008, Pages 166-179

Weak first- or second-order implicit Runge-Kutta methods for stochastic differential equations with a scalar Wiener process

Author keywords

A stability; Bi colored rooted tree; Derivative free; MS stability; Multiplicative noise; Polynomially bounded differential functions; Stratonovich type

Indexed keywords

ASYMPTOTIC STABILITY; CONVERGENCE OF NUMERICAL METHODS; LINEAR EQUATIONS; MEAN SQUARE ERROR; POLYNOMIALS; RUNGE KUTTA METHODS; STOCHASTIC MODELS; TREES (MATHEMATICS);

EID: 43049139932     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2007.06.024     Document Type: Article
Times cited : (10)

References (38)
  • 3
    • 0034547253 scopus 로고    scopus 로고
    • Order conditions of stochastic Runge-Kutta methods by B-series
    • Burrage K., and Burrage P.M. Order conditions of stochastic Runge-Kutta methods by B-series. SIAM J. Numer. Anal. 38 5 (2000) 1626-1646
    • (2000) SIAM J. Numer. Anal. , vol.38 , Issue.5 , pp. 1626-1646
    • Burrage, K.1    Burrage, P.M.2
  • 4
    • 1542512456 scopus 로고    scopus 로고
    • Numerical methods for strong solutions of stochastic differential equations: an overview
    • Burrage K., Burrage P.M., and Tian T. Numerical methods for strong solutions of stochastic differential equations: an overview. Proc. Roy. Soc. London Ser. A 460 (2004) 373-402
    • (2004) Proc. Roy. Soc. London Ser. A , vol.460 , pp. 373-402
    • Burrage, K.1    Burrage, P.M.2    Tian, T.3
  • 5
    • 0004551564 scopus 로고
    • Runge-Kutta methods for stochastic differential equations
    • Burrage K., and Platen E. Runge-Kutta methods for stochastic differential equations. Ann. Numer. Math. 1 (1994) 63-78
    • (1994) Ann. Numer. Math. , vol.1 , pp. 63-78
    • Burrage, K.1    Platen, E.2
  • 6
    • 4043136017 scopus 로고    scopus 로고
    • Implicit stochastic Runge-Kutta methods for stochastic differential equations
    • Burrage K., and Tian T. Implicit stochastic Runge-Kutta methods for stochastic differential equations. BIT 44 1 (2004) 21-39
    • (2004) BIT , vol.44 , Issue.1 , pp. 21-39
    • Burrage, K.1    Tian, T.2
  • 8
    • 0007508207 scopus 로고
    • The maximum rate of convergence of discrete approximations for stochastic differential equations
    • Clark J.M.C., and Cameron R.J. The maximum rate of convergence of discrete approximations for stochastic differential equations. Lecture Notes in Control and Inform. Sci. 25 (1980) 162-171
    • (1980) Lecture Notes in Control and Inform. Sci. , vol.25 , pp. 162-171
    • Clark, J.M.C.1    Cameron, R.J.2
  • 10
    • 0042185223 scopus 로고    scopus 로고
    • A-stability and stochastic mean-square stability
    • Higham D.J. A-stability and stochastic mean-square stability. BIT 40 2 (2000) 404-409
    • (2000) BIT , vol.40 , Issue.2 , pp. 404-409
    • Higham, D.J.1
  • 11
    • 40649088774 scopus 로고    scopus 로고
    • Numerical solutions of stochastic differential equations and their applications
    • Kanagawa S., and Ogawa S. Numerical solutions of stochastic differential equations and their applications. Sugaku Expositions 18 1 (2005) 75-99
    • (2005) Sugaku Expositions , vol.18 , Issue.1 , pp. 75-99
    • Kanagawa, S.1    Ogawa, S.2
  • 13
    • 33846257307 scopus 로고    scopus 로고
    • Multi-colored rooted tree analysis of the weak order conditions of a stochastic Runge-Kutta family
    • Komori Y. Multi-colored rooted tree analysis of the weak order conditions of a stochastic Runge-Kutta family. Appl. Numer. Math. 57 2 (2007) 147-165
    • (2007) Appl. Numer. Math. , vol.57 , Issue.2 , pp. 147-165
    • Komori, Y.1
  • 14
    • 33847361411 scopus 로고    scopus 로고
    • Weak order stochastic Runge-Kutta methods for commutative stochastic differential equations
    • Komori Y. Weak order stochastic Runge-Kutta methods for commutative stochastic differential equations. J. Comput. Appl. Math. 203 1 (2007) 57-79
    • (2007) J. Comput. Appl. Math. , vol.203 , Issue.1 , pp. 57-79
    • Komori, Y.1
  • 15
    • 34249278816 scopus 로고    scopus 로고
    • Weak second-order stochastic Runge-Kutta methods for non-commutative stochastic differential equations
    • Komori Y. Weak second-order stochastic Runge-Kutta methods for non-commutative stochastic differential equations. J. Comput. Appl. Math. 206 1 (2007) 158-173
    • (2007) J. Comput. Appl. Math. , vol.206 , Issue.1 , pp. 158-173
    • Komori, Y.1
  • 16
    • 0005272542 scopus 로고
    • Stable ROW-type weak scheme for stochastic differential equations
    • Komori Y., and Mitsui T. Stable ROW-type weak scheme for stochastic differential equations. Monte Carlo Methods Appl. 1 4 (1995) 279-300
    • (1995) Monte Carlo Methods Appl. , vol.1 , Issue.4 , pp. 279-300
    • Komori, Y.1    Mitsui, T.2
  • 17
    • 0642303008 scopus 로고    scopus 로고
    • Rooted tree analysis of the order conditions of ROW-type scheme for stochastic differential equations
    • Komori Y., Mitsui T., and Sugiura H. Rooted tree analysis of the order conditions of ROW-type scheme for stochastic differential equations. BIT 37 1 (1997) 43-66
    • (1997) BIT , vol.37 , Issue.1 , pp. 43-66
    • Komori, Y.1    Mitsui, T.2    Sugiura, H.3
  • 18
    • 0003074014 scopus 로고
    • Continuous Markov processes and stochastic equations
    • Maruyama G. Continuous Markov processes and stochastic equations. Rend. Circ. Mat. Palermo 4 (1955) 48-90
    • (1955) Rend. Circ. Mat. Palermo , vol.4 , pp. 48-90
    • Maruyama, G.1
  • 19
    • 0000532548 scopus 로고
    • A method of second-order accuracy integration of stochastic differential equations
    • Milstein G.N. A method of second-order accuracy integration of stochastic differential equations. Theory Probab. Appl. 23 2 (1978) 396-401
    • (1978) Theory Probab. Appl. , vol.23 , Issue.2 , pp. 396-401
    • Milstein, G.N.1
  • 20
    • 0000996567 scopus 로고
    • Weak approximation of solutions of systems of stochastic differential equations
    • Milstein G.N. Weak approximation of solutions of systems of stochastic differential equations. Theory Probab. Appl. 30 4 (1986) 750-766
    • (1986) Theory Probab. Appl. , vol.30 , Issue.4 , pp. 750-766
    • Milstein, G.N.1
  • 22
    • 0001533096 scopus 로고    scopus 로고
    • Balanced implicit methods for stiff stochastic systems
    • Milstein G.N., Platen E., and Schurz H. Balanced implicit methods for stiff stochastic systems. SIAM J. Appl. Math. 35 3 (1998) 1010-1019
    • (1998) SIAM J. Appl. Math. , vol.35 , Issue.3 , pp. 1010-1019
    • Milstein, G.N.1    Platen, E.2    Schurz, H.3
  • 23
    • 0141869053 scopus 로고    scopus 로고
    • Numerical methods for stochastic systems preserving symplectic structure
    • Milstein G.N., Repin YU.M., and Tretyakov M.V. Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Appl. Math. 40 4 (2002) 1583-1604
    • (2002) SIAM J. Appl. Math. , vol.40 , Issue.4 , pp. 1583-1604
    • Milstein, G.N.1    Repin, YU.M.2    Tretyakov, M.V.3
  • 24
    • 43049145679 scopus 로고    scopus 로고
    • A. Rößler, Runge-Kutta methods for the numerical solution of stochastic differential equations, Ph.D. Thesis, Darmstadt University of Technology, Germany, 2003.
    • A. Rößler, Runge-Kutta methods for the numerical solution of stochastic differential equations, Ph.D. Thesis, Darmstadt University of Technology, Germany, 2003.
  • 25
    • 1442264991 scopus 로고    scopus 로고
    • Runge-Kutta methods for Stratonovich stochastic differential equation systems with commutative noise
    • Rößler A. Runge-Kutta methods for Stratonovich stochastic differential equation systems with commutative noise. J. Comput. Appl. Math. 164-165 (2004) 613-627
    • (2004) J. Comput. Appl. Math. , vol.164-165 , pp. 613-627
    • Rößler, A.1
  • 26
    • 30444461217 scopus 로고    scopus 로고
    • Rooted tree analysis for order conditions of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations
    • Rößler A. Rooted tree analysis for order conditions of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations. Stochastic Anal. Appl. 24 1 (2006) 97-134
    • (2006) Stochastic Anal. Appl. , vol.24 , Issue.1 , pp. 97-134
    • Rößler, A.1
  • 27
    • 33645029424 scopus 로고    scopus 로고
    • Runge-Kutta methods for Itô stochastic differential equations with scalar noise
    • Rößler A. Runge-Kutta methods for Itô stochastic differential equations with scalar noise. BIT 46 1 (2006) 97-110
    • (2006) BIT , vol.46 , Issue.1 , pp. 97-110
    • Rößler, A.1
  • 28
    • 0001040012 scopus 로고
    • Numerical treatment of stochastic differential equations
    • Rümelin W. Numerical treatment of stochastic differential equations. SIAM J. Numer. Anal. 19 3 (1982) 604-613
    • (1982) SIAM J. Numer. Anal. , vol.19 , Issue.3 , pp. 604-613
    • Rümelin, W.1
  • 29
    • 0000007761 scopus 로고    scopus 로고
    • Stability analysis of numerical schemes for stochastic differential equations
    • Saito Y., and Mitsui T. Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal. 33 6 (1996) 2254-2267
    • (1996) SIAM J. Numer. Anal. , vol.33 , Issue.6 , pp. 2254-2267
    • Saito, Y.1    Mitsui, T.2
  • 30
    • 21344458305 scopus 로고    scopus 로고
    • Asymptotical mean square stability of an equilibrium point of some linear numerical solutions with multiplicative noise
    • Schurz H. Asymptotical mean square stability of an equilibrium point of some linear numerical solutions with multiplicative noise. Stochastic Anal. Appl. 14 3 (1996) 313-353
    • (1996) Stochastic Anal. Appl. , vol.14 , Issue.3 , pp. 313-353
    • Schurz, H.1
  • 31
    • 43049108264 scopus 로고    scopus 로고
    • H. Schurz, Stability, stationarity, and boundedness of some implicit numerical methods for stochastic differential equations, Ph.D. Thesis, Humboldt University, Germany, 1997.
    • H. Schurz, Stability, stationarity, and boundedness of some implicit numerical methods for stochastic differential equations, Ph.D. Thesis, Humboldt University, Germany, 1997.
  • 32
    • 22644451310 scopus 로고    scopus 로고
    • The invariance of asymptotic laws of linear stochastic systems under discretization
    • Schurz H. The invariance of asymptotic laws of linear stochastic systems under discretization. Z. Angew. Math. Mech. 79 6 (1999) 375-382
    • (1999) Z. Angew. Math. Mech. , vol.79 , Issue.6 , pp. 375-382
    • Schurz, H.1
  • 33
    • 0033429753 scopus 로고    scopus 로고
    • Preservation of probabilistic laws through Euler methods for Ornstein-Uhlenbeck process
    • Schurz H. Preservation of probabilistic laws through Euler methods for Ornstein-Uhlenbeck process. Stochastic Anal. Appl. 17 3 (1999) 463-486
    • (1999) Stochastic Anal. Appl. , vol.17 , Issue.3 , pp. 463-486
    • Schurz, H.1
  • 35
    • 85013969744 scopus 로고    scopus 로고
    • Convergence and stability of balanced implicit methods for systems of SDEs
    • Schurz H. Convergence and stability of balanced implicit methods for systems of SDEs. Internat. J. Numer. Anal. Model. 2 2 (2005) 197-220
    • (2005) Internat. J. Numer. Anal. Model. , vol.2 , Issue.2 , pp. 197-220
    • Schurz, H.1
  • 36
    • 0021313777 scopus 로고
    • Efficient numerical schemes for the approximation of expectations of functionals of the solution of a S.D.E. and applications
    • Talay D. Efficient numerical schemes for the approximation of expectations of functionals of the solution of a S.D.E. and applications. Lecture Notes in Control and Inform. Sci. 61 (1984) 294-313
    • (1984) Lecture Notes in Control and Inform. Sci. , vol.61 , pp. 294-313
    • Talay, D.1
  • 37
    • 0043236587 scopus 로고    scopus 로고
    • Two-stage stochastic Runge-Kutta methods for stochastic differential equations
    • Tian T., and Burrage K. Two-stage stochastic Runge-Kutta methods for stochastic differential equations. BIT 42 3 (2002) 625-643
    • (2002) BIT , vol.42 , Issue.3 , pp. 625-643
    • Tian, T.1    Burrage, K.2
  • 38
    • 0000575447 scopus 로고
    • On the convergence of ordinary integrals to stochastic integrals
    • Wong E., and Zakai M. On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist. 36 (1965) 1560-1564
    • (1965) Ann. Math. Statist. , vol.36 , pp. 1560-1564
    • Wong, E.1    Zakai, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.