메뉴 건너뛰기




Volumn 72, Issue 4-6, 2009, Pages 968-972

Implementing plastic weights in neural networks using low precision arithmetic

Author keywords

Exponentially weighted moving average; Fixed point arithmetic; Leaky integrator; Low precision variables; Neural networks; Plastic weights

Indexed keywords

ATTRACTOR NEURAL NETWORKS; CONNECTIONIST NETWORKS; DIGITAL HARDWARES; EXPONENTIALLY WEIGHTED MOVING AVERAGE; FIXED-POINT ARITHMETIC; LEAKY INTEGRATOR; LOW PRECISION VARIABLES; PRECISION ARITHMETICS; TRUNCATION ERRORS;

EID: 58149468833     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.04.007     Document Type: Article
Times cited : (6)

References (17)
  • 1
    • 0035989190 scopus 로고    scopus 로고
    • On the capabilities of neural networks using limited precision weights
    • Draghici S. On the capabilities of neural networks using limited precision weights. Neural Networks 15 3 (2002) 395-414
    • (2002) Neural Networks , vol.15 , Issue.3 , pp. 395-414
    • Draghici, S.1
  • 2
    • 0026896593 scopus 로고
    • Learning with limited numerical precision using the cascade-correlation algorithm
    • Hoehfeld M., and Fahlman S.E. Learning with limited numerical precision using the cascade-correlation algorithm. IEEE Trans. Neural Networks 3 4 (1992) 602-611
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.4 , pp. 602-611
    • Hoehfeld, M.1    Fahlman, S.E.2
  • 3
    • 33845642736 scopus 로고    scopus 로고
    • Towards cortex sized artificial neural systems
    • Johansson C., and Lansner A. Towards cortex sized artificial neural systems. Neural Networks 20 1 (2006) 48-61
    • (2006) Neural Networks , vol.20 , Issue.1 , pp. 48-61
    • Johansson, C.1    Lansner, A.2
  • 4
    • 34447262844 scopus 로고    scopus 로고
    • Imposing biological constraints onto an abstract neocortical attractor network model
    • Johansson C., and Lansner A. Imposing biological constraints onto an abstract neocortical attractor network model. Neural Comput. 19 7 (2007) 1871-1896
    • (2007) Neural Comput. , vol.19 , Issue.7 , pp. 1871-1896
    • Johansson, C.1    Lansner, A.2
  • 5
    • 58149463169 scopus 로고    scopus 로고
    • C. Koch, I. Segev, Compartmental models of complex neurons (Chapter 3), in: T.J. Sejnowski, T.A. Poggio (Eds.), Methods in Neural Modeling: from Ions to Networks, second ed., A Bradford Book, London, England, 1998.
    • C. Koch, I. Segev, Compartmental models of complex neurons (Chapter 3), in: T.J. Sejnowski, T.A. Poggio (Eds.), Methods in Neural Modeling: from Ions to Networks, second ed., A Bradford Book, London, England, 1998.
  • 6
    • 0002037186 scopus 로고
    • A one-layer feedback artificial neural network with a Bayesian learning rule
    • Lansner A., and Ekeberg O. A one-layer feedback artificial neural network with a Bayesian learning rule. Int. J. Neural Syst. 1 1 (1989) 77-87
    • (1989) Int. J. Neural Syst. , vol.1 , Issue.1 , pp. 77-87
    • Lansner, A.1    Ekeberg, O.2
  • 7
    • 0030135411 scopus 로고    scopus 로고
    • A higher order Bayesian neural network with spiking units
    • Lansner A., and Holst A. A higher order Bayesian neural network with spiking units. Int. J. Neural Syst. 7 2 (1996) 115-128
    • (1996) Int. J. Neural Syst. , vol.7 , Issue.2 , pp. 115-128
    • Lansner, A.1    Holst, A.2
  • 8
    • 0034296490 scopus 로고    scopus 로고
    • Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses
    • Mattia M., and Giudice P.D. Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Comput. 12 (2000) 2305-2329
    • (2000) Neural Comput. , vol.12 , pp. 2305-2329
    • Mattia, M.1    Giudice, P.D.2
  • 9
    • 0242695748 scopus 로고    scopus 로고
    • Synaptic plasticity in spiking neural networks (SP2INN): a system approach
    • Mehrtash N., et al. Synaptic plasticity in spiking neural networks (SP2INN): a system approach. IEEE Trans. Neural Networks 14 5 (2003) 980-992
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.5 , pp. 980-992
    • Mehrtash, N.1
  • 10
    • 0026868201 scopus 로고
    • The TInMANN VLSI chip
    • Melton M., et al. The TInMANN VLSI chip. IEEE Trans. Neural Networks 3 3 (1992) 375-384
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.3 , pp. 375-384
    • Melton, M.1
  • 12
    • 58149458837 scopus 로고    scopus 로고
    • Signals & systems
    • Nawab H. (Ed), Prentice-Hall International, London
    • Oppenheim A.V., and Willsky A.S. Signals & systems. In: Nawab H. (Ed). Signal Processing. second ed. (1997), Prentice-Hall International, London
    • (1997) Signal Processing. second ed.
    • Oppenheim, A.V.1    Willsky, A.S.2
  • 13
    • 0034292125 scopus 로고    scopus 로고
    • Bayesian neural networks with confidence estimations applied to data mining
    • Orre R., et al. Bayesian neural networks with confidence estimations applied to data mining. Comput. Stat. Data Anal. 34 8 (2000) 473-493
    • (2000) Comput. Stat. Data Anal. , vol.34 , Issue.8 , pp. 473-493
    • Orre, R.1
  • 15
    • 0043192821 scopus 로고    scopus 로고
    • A Bayesian attractor network with incremental learning
    • Sandberg A., et al. A Bayesian attractor network with incremental learning. Network: Comput. Neural Syst. 13 2 (2002) 179-194
    • (2002) Network: Comput. Neural Syst. , vol.13 , Issue.2 , pp. 179-194
    • Sandberg, A.1
  • 17
    • 0344033901 scopus 로고    scopus 로고
    • A study of variable EWMA controller
    • Tseng S.-T., et al. A study of variable EWMA controller. IEEE Trans. Semiconductor Manuf. 16 4 (2003) 633-643
    • (2003) IEEE Trans. Semiconductor Manuf. , vol.16 , Issue.4 , pp. 633-643
    • Tseng, S.-T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.