메뉴 건너뛰기




Volumn 72, Issue 4-6, 2009, Pages 1078-1083

Simplified neural networks algorithm for function approximation on discrete input spaces in high dimension-limited sample applications

Author keywords

Discrete input spaces; Function approximation; Neural networks; Simplified NN architecture; Universal approximation

Indexed keywords

APPROXIMATING FUNCTIONS; APPROXIMATION ACCURACIES; DATA SETS; DISCRETE INPUT SPACES; FEEDFORWARD; FUNCTION APPROXIMATION; HIDDEN LAYERS; HIGH DIMENSIONS; LINEAR FUNCTIONS; NEURAL NETWORK ARCHITECTURES; NEURAL NETWORKS ALGORITHMS; SIMPLIFIED NN ARCHITECTURE; UNIVERSAL APPROXIMATION;

EID: 58149461174     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.03.011     Document Type: Article
Times cited : (3)

References (20)
  • 1
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of MLP model in neural networks
    • Allan Pinkus. Approximation theory of MLP model in neural networks. Acta Numer. 8 (1999) 143-195
    • (1999) Acta Numer. , vol.8 , pp. 143-195
    • Allan Pinkus1
  • 2
    • 58149461243 scopus 로고    scopus 로고
    • H. Altay Guvenir, I. Uysal, Bilkent University Function Approximation Repository, 〈http://funapp.cs.bilkent.edu.tr〉, 2000.
    • H. Altay Guvenir, I. Uysal, Bilkent University Function Approximation Repository, 〈http://funapp.cs.bilkent.edu.tr〉, 2000.
  • 3
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, computing, design, and application
    • Basheer I.A., and Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43 (2000) 3-31
    • (2000) J. Microbiol. Methods , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 4
    • 0024861871 scopus 로고
    • Approximation by superpositions of sigmoidal function
    • Cybenko G. Approximation by superpositions of sigmoidal function. Math. Control Signals Syst. 2 (1989) 303-314
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 5
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results
    • Franco Scarselli, and Chung Tsoi A.H. Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results. Neural Netw. 11 1 (1998) 15-37
    • (1998) Neural Netw. , vol.11 , Issue.1 , pp. 15-37
    • Franco Scarselli1    Chung Tsoi, A.H.2
  • 6
    • 0036740193 scopus 로고    scopus 로고
    • An introduction to the use of neural networks in control systems
    • Hagan M., Demuth H., and De Jesus O. An introduction to the use of neural networks in control systems. Int. J. Robust Nonlinear Control 12 11 (2002) 959-985
    • (2002) Int. J. Robust Nonlinear Control , vol.12 , Issue.11 , pp. 959-985
    • Hagan, M.1    Demuth, H.2    De Jesus, O.3
  • 7
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Netw. 2 (1989) 359-366
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 8
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.-B., and Chen L. Convex incremental extreme learning machine. Neurocomputing 70 16-18 (2007) 3056-3062
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 9
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.-B., Chen L., and Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17 4 (2006) 879-892
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 10
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., and Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 70 (2006) 489-501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 12
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • Leshno M., Lin V.Y., Pinkus A., and Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 6 6 (1993) 861-867
    • (1993) Neural Netw. , vol.6 , Issue.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 13
    • 0030631861 scopus 로고    scopus 로고
    • Neural networks for function approximation and system identification
    • Mhaskar H.N., and Nahmwoo Hahm. Neural networks for function approximation and system identification. Neural Comput. 9 (1997) 143-159
    • (1997) Neural Comput. , vol.9 , pp. 143-159
    • Mhaskar, H.N.1    Nahmwoo Hahm2
  • 14
    • 0025490985 scopus 로고
    • A theory of networks for approximation and learning, networks for approximation and learning
    • Poggio T., and Girosi F. A theory of networks for approximation and learning, networks for approximation and learning. Proc. IEEE (Special Issue Neural Netw. 78 9 (1990) 1481-1497
    • (1990) Proc. IEEE (Special Issue Neural Netw. , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 15
    • 0036565609 scopus 로고    scopus 로고
    • Neural network approximation of piecewise continuous functions: application to friction compensation
    • Ratsko R., Selmic A., and Lewis F.L. Neural network approximation of piecewise continuous functions: application to friction compensation. IEEE Trans. Neural Netw. 13 3 (2002) 745-751
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.3 , pp. 745-751
    • Ratsko, R.1    Selmic, A.2    Lewis, F.L.3
  • 16
    • 13844255524 scopus 로고    scopus 로고
    • Smooth function approximation using neural networks
    • Silvia Ferrari, and Stengel R.F. Smooth function approximation using neural networks. IEEE Trans. Neural Netw. 16 1 (2005) 24-38
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.1 , pp. 24-38
    • Silvia Ferrari1    Stengel, R.F.2
  • 17
    • 0032961240 scopus 로고    scopus 로고
    • Neural network approximation of continuous functionals and continuous functionals on compactifications
    • Stinchcombe M.B. Neural network approximation of continuous functionals and continuous functionals on compactifications. Neural Netw. 12 (1999) 467-477
    • (1999) Neural Netw. , vol.12 , pp. 467-477
    • Stinchcombe, M.B.1
  • 18
    • 0037544056 scopus 로고    scopus 로고
    • A survey on the universal approximation and its limits in soft computing techniques
    • Tikk D., Kóczy L.T., and Gedeon T.D. A survey on the universal approximation and its limits in soft computing techniques. Int. J. Approximate Reasoning 33 2 (2003) 185-202
    • (2003) Int. J. Approximate Reasoning , vol.33 , Issue.2 , pp. 185-202
    • Tikk, D.1    Kóczy, L.T.2    Gedeon, T.D.3
  • 19
    • 34548155393 scopus 로고    scopus 로고
    • Approximation capabilities of hierarchical neural-fuzzy systems for function approximation on discrete spaces
    • Zeng X.-J., Goulerma J.Y., Keane J.A., and Liatsis P. Approximation capabilities of hierarchical neural-fuzzy systems for function approximation on discrete spaces. Int. J. comput. Intell. Res. 1 1 (2005) 29-41
    • (2005) Int. J. comput. Intell. Res. , vol.1 , Issue.1 , pp. 29-41
    • Zeng, X.-J.1    Goulerma, J.Y.2    Keane, J.A.3    Liatsis, P.4
  • 20
    • 27644483709 scopus 로고    scopus 로고
    • Approximation capabilities of hierarchical fuzzy systems
    • Zeng X.-J., John, and Keane A. Approximation capabilities of hierarchical fuzzy systems. IEEE Transa. Fuzzy Syst. 13 5 (2005) 659-672
    • (2005) IEEE Transa. Fuzzy Syst. , vol.13 , Issue.5 , pp. 659-672
    • Zeng, X.-J.1    John2    Keane, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.