메뉴 건너뛰기




Volumn 22, Issue 1, 2009, Pages 123-143

Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian

Author keywords

[No Author keywords available]

Indexed keywords


EID: 58149352595     PISSN: 09517715     EISSN: 13616544     Source Type: Journal    
DOI: 10.1088/0951-7715/22/1/007     Document Type: Article
Times cited : (33)

References (27)
  • 1
    • 0001719066 scopus 로고
    • Trace maps, invariants, and some of their applications
    • Baake M, Grimm U and Joseph D 1993 Trace maps, invariants, and some of their applications Int. J. Mod. Phys. B 7 1527-50
    • (1993) Int. J. Mod. Phys. B , vol.7 , pp. 1527-1550
    • Baake, M.1    Grimm, U.2    Joseph, D.3
  • 2
    • 0039862141 scopus 로고
    • The dynamics of trace maps
    • Baake M and Roberts J 1994 The dynamics of trace maps Hamiltonian Mechanics (Toruń, 1993) (NATO Adv. Sci. Inst. Ser. B Phys. vol 331) (New York: Plenum) pp 275-85
    • (1994) Hamiltonian Mechanics , pp. 275-285
    • Baake, M.1    Roberts, J.2
  • 3
    • 0000944845 scopus 로고
    • Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation
    • Casdagli M 1986 Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation Commun. Math. Phys. 107 295-318
    • (1986) Commun. Math. Phys. , vol.107 , Issue.2 , pp. 295-318
    • Casdagli, M.1
  • 4
    • 58149360028 scopus 로고    scopus 로고
    • Cantat S 2007 Bers and Hénon, Painlevé and Schrödinger arXiv:0711.1727v2 [math.CA]
    • (2007)
    • Cantat, S.1
  • 5
    • 0000918178 scopus 로고    scopus 로고
    • Gordon-type arguments in the spectral theory of one-dimensional quasicrystals
    • Damanik D 2000 Gordon-type arguments in the spectral theory of one-dimensional quasicrystals Directions in Mathematical Quasicrystals (CRM Monogr. Ser. vol 13) (Providence, RI: American Mathematical Soceity) pp 277-305
    • (2000) Directions in Mathematical Quasicrystals , pp. 277-305
    • Damanik, D.1
  • 8
    • 0033475027 scopus 로고    scopus 로고
    • Uniform spectral properties of one-dimensional quasicrystals: I. Absence of eigenvalues
    • Damanik D and Lenz D 1999 Uniform spectral properties of one-dimensional quasicrystals: I. Absence of eigenvalues Commun. Math. Phys. 207 687-96
    • (1999) Commun. Math. Phys. , vol.207 , Issue.3 , pp. 687-696
    • Damanik, D.1    Lenz, D.2
  • 10
    • 34547179301 scopus 로고    scopus 로고
    • Curves of fixed points of trace maps
    • Humphries S and Manning A 2007 Curves of fixed points of trace maps Ergod. Theory Dyn. Syst. 27 1167-98
    • (2007) Ergod. Theory Dyn. Syst. , vol.27 , Issue.4 , pp. 1167-1198
    • Humphries, S.1    Manning, A.2
  • 12
    • 0000532658 scopus 로고
    • Localization problem in one dimension: Mapping and escape
    • Kohmoto M, Kadanoff L P and Tang C 1983 Localization problem in one dimension: mapping and escape Phys. Rev. Lett. 50 1870-2
    • (1983) Phys. Rev. Lett. , vol.50 , Issue.23 , pp. 1870-1872
    • Kohmoto, M.1    Kadanoff, L.P.2    Tang, C.3
  • 13
    • 0042878365 scopus 로고    scopus 로고
    • Hausdorff dimension of spectrum of one-dimensional Schrödinger operator with Sturmian potentials
    • Liu Q-H and Wen Z-Y 2004 Hausdorff dimension of spectrum of one-dimensional Schrödinger operator with Sturmian potentials Potential Anal. 20 33-59
    • (2004) Potential Anal. , vol.20 , Issue.1 , pp. 33-59
    • Liu, Q.-H.1    Wen, Z.-Y.2
  • 14
    • 0001743385 scopus 로고
    • Structural stability of diffeomorphisms on two-manifolds
    • de Melo W 1973 Structural stability of diffeomorphisms on two-manifolds Invent. Math. 21 233-46
    • (1973) Invent. Math. , vol.21 , Issue.3 , pp. 233-246
    • De Melo, W.1
  • 15
    • 51249173621 scopus 로고
    • The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces
    • Mané R 1990 The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces Bol. Soc. Brasil. Mat. (N.S.) 20 1-24
    • (1990) Bol. Soc. Brasil. Mat. (N.S.) , vol.20 , Issue.2 , pp. 1-24
    • Mané, R.1
  • 17
    • 0000510446 scopus 로고
    • One-dimensional Schrödinger equation with an almost periodic potential
    • Ostlund S, Pandit R, Rand D, Schellnhuber H and Siggia E 1983 One-dimensional Schrödinger equation with an almost periodic potential Phys. Rev. Lett. 50 1873-7
    • (1983) Phys. Rev. Lett. , vol.50 , Issue.23 , pp. 1873-1877
    • Ostlund, S.1    Pandit, R.2    Rand, D.3    Schellnhuber, H.4    Siggia, E.5
  • 21
    • 0001731090 scopus 로고
    • On the continuity of the Hausdorff dimension and limit capacity for horseshoes
    • Palis J and Viana M 1988 On the continuity of the Hausdorff dimension and limit capacity for horseshoes Dynamical Systems (Lecture Notes in Mathematics vol 1331) (Berlin: Springer) pp 150-60
    • (1988) Dynamical Systems , vol.1331 , pp. 150-160
    • Palis, J.1    Viana, M.2
  • 23
    • 0030164711 scopus 로고    scopus 로고
    • Escaping orbits in trace maps
    • Roberts J 1996 Escaping orbits in trace maps Phys. A 228 295-325
    • (1996) Phys. , vol.228 , Issue.1-4 , pp. 295-325
    • Roberts, J.1
  • 24
    • 34250103530 scopus 로고
    • The spectrum of a quasiperiodic Schrödinger operator
    • Süt A 1987 The spectrum of a quasiperiodic Schrödinger operator Commun. Math. Phys. 111 409-15
    • (1987) Commun. Math. Phys. , vol.111 , Issue.3 , pp. 409-415
    • Süt, A.1
  • 25
    • 0042937447 scopus 로고
    • Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian
    • Süt A 1989 Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian J. Stat. Phys. 56 525-31
    • (1989) J. Stat. Phys. , vol.56 , Issue.3-4 , pp. 525-531
    • Süt, A.1
  • 26
    • 0000243199 scopus 로고
    • Schrödinger difference equation with deterministic ergodic potentials
    • Süt A 1995 Schrödinger difference equation with deterministic ergodic potentials Beyond Quasicrystals (Les Houches, 1994) (Berlin: Springer) pp 481-549
    • (1995) Beyond Quasicrystals , pp. 481-549
    • Süt, A.1
  • 27
    • 0001711762 scopus 로고
    • Limit capacity and Hausdorff dimension of dynamically defined Cantor sets
    • Takens F 1988 Limit capacity and Hausdorff dimension of dynamically defined Cantor sets Dynamical Systems (Lecture Notes in Mathematics vol 1331) (Berlin: Springer) pp 196-212
    • (1988) Dynamical Systems , vol.1331 , pp. 196-212
    • Takens, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.