메뉴 건너뛰기




Volumn 18, Issue 4, 2008, Pages 455-464

Random projection RBF nets for multidimensional density estimation

Author keywords

Dimension reduction; Multivariate density estimation; Normal random projection; Novelty detection; Radial basis functions

Indexed keywords

CHARGE COUPLED DEVICES; FEEDFORWARD NEURAL NETWORKS; IMAGE SEGMENTATION; MARINE BIOLOGY; PROBABILITY DENSITY FUNCTION; RADIAL BASIS FUNCTION NETWORKS;

EID: 58149194916     PISSN: 1641876X     EISSN: None     Source Type: Journal    
DOI: 10.2478/v10006-008-0040-9     Document Type: Article
Times cited : (17)

References (55)
  • 6
    • 0001245944 scopus 로고
    • An alternative method of cross-validation for the smoothing of density estimates
    • Bowman A.W. (1995). An alternative method of cross-validation for the smoothing of density estimates, Biometrika 71(2): 353-360.
    • (1995) Biometrika , vol.71 , Issue.2 , pp. 353-360
    • Bowman, A.W.1
  • 7
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead D. and Lowe D. (1988). Multivariable functional interpolation and adaptive networks, Complex Systems 2(11): 321-323.
    • (1988) Complex Systems , vol.2 , Issue.11 , pp. 321-323
    • Broomhead, D.1    Lowe, D.2
  • 9
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basisfunction networks
    • Chen S., Cowan CRN. and Grant P.M. (1991). Orthogonal least squares learning algorithm for radial basisfunction networks, IEEE Transactions on Neural Networks 2(2): 302-307.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 302-307
    • Chen, S.1    Cowan, C.R.N.2    Grant, P.M.3
  • 10
    • 3442881906 scopus 로고    scopus 로고
    • Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
    • Chen S., Hong X. and Harris C.J. (2004). Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34(4): 1708-1717.
    • (2004) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.34 , Issue.4 , pp. 1708-1717
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 11
    • 0037236821 scopus 로고    scopus 로고
    • An elementary proof of a theorem of Johnson and Lindenstrauss
    • Dasgupta S. and Gupta A. (2003). An elementary proof of a theorem of Johnson and Lindenstrauss, Random Structures and Algorithms 22(1): 60-65.
    • (2003) Random Structures and Algorithms , vol.22 , Issue.1 , pp. 60-65
    • Dasgupta, S.1    Gupta, A.2
  • 14
    • 38249031101 scopus 로고
    • The Johnson-Lindenstrauss lemma and the sphericity of some graphs
    • Frankl P. and Maehara H. (1987). The Johnson-Lindenstrauss lemma and the sphericity of some graphs, Journal of Combinatorial Theory A 44(3): 355-362.
    • (1987) Journal of Combinatorial Theory A , vol.44 , Issue.3 , pp. 355-362
    • Frankl, P.1    Maehara, H.2
  • 16
    • 23144467659 scopus 로고    scopus 로고
    • A hybrid learning based model for on-line detection and analysis of control chart patterns
    • Guh R. (2005). A hybrid learning based model for on-line detection and analysis of control chart patterns. Computers and Industrial Engineering 49(1): 35-62.
    • (2005) Computers and Industrial Engineering , vol.49 , Issue.1 , pp. 35-62
    • Guh, R.1
  • 21
    • 0001654702 scopus 로고
    • Extensions of Lipshitz mapping into Hilbert space
    • Johnson W. B. and Lindenstrauss J. (1984). Extensions of Lipshitz mapping into Hilbert space. Contemporary Mathematics 26: 189-206.
    • (1984) Contemporary Mathematics , vol.26 , pp. 189-206
    • Johnson, W.B.1    Lindenstrauss, J.2
  • 23
    • 0032690356 scopus 로고    scopus 로고
    • Reformulated radial basis neural networks trained by gradient descent
    • Karayiannis N.B. (1999). Reformulated radial basis neural networks trained by gradient descent, IEEE Transactions on Neural Networks 10(3): 657-671.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.3 , pp. 657-671
    • Karayiannis, N.B.1
  • 24
    • 0035422273 scopus 로고    scopus 로고
    • Nonlinear function learning using optimal radial basis function networks
    • Krzyzak A. (2001). Nonlinear function learning using optimal radial basis function networks, Journal on Nonlinear Analysis 47(1): 293-302.
    • (2001) Journal on Nonlinear Analysis , vol.47 , Issue.1 , pp. 293-302
    • Krzyzak, A.1
  • 25
    • 0030109050 scopus 로고    scopus 로고
    • Nonparametric estimation and classification using radial basis function nets and empirical risk minimization
    • Krzyzak A., Linder T. and Lugosi G. (2001). Nonparametric estimation and classification using radial basis function nets and empirical risk minimization, IEEE Transactions on Neural Networks 7(2): 475-487.
    • (2001) IEEE Transactions on Neural Networks , vol.7 , Issue.2 , pp. 475-487
    • Krzyzak, A.1    Linder, T.2    Lugosi, G.3
  • 26
    • 0035421744 scopus 로고    scopus 로고
    • Convergence and rates of convergence of radial basis functions networks in function learning
    • Krzyzak A. and Niemann H. (2001). Convergence and rates of convergence of radial basis functions networks in function learning, Journal on Nonlinear Analysis 47(1): 281-292.
    • (2001) Journal on Nonlinear Analysis , vol.47 , Issue.1 , pp. 281-292
    • Krzyzak, A.1    Niemann, H.2
  • 28
    • 85003107581 scopus 로고    scopus 로고
    • Korbicz J, Kościelny J. M, Kowalczuk Z. and Cholewa W, Eds, Springer-Verlag, Berlin
    • Korbicz J., Kościelny J. M., Kowalczuk Z. and Cholewa W. (Eds) (2004). Fault diagnosis. Models, Artificial Intelligence, Applications, Springer-Verlag, Berlin.
    • (2004) Fault diagnosis. Models, Artificial Intelligence, Applications
  • 29
    • 0025532003 scopus 로고
    • Classifying process behaviour with neural networks: Strategies for improved training and generalization
    • San Diego, CA, USA, pp
    • Leonard J. A., and Kramer M. A. (1990). Classifying process behaviour with neural networks: Strategies for improved training and generalization, Proceedings of the American Control Conference, San Diego, CA, USA, pp. 2478-2483.
    • (1990) Proceedings of the American Control Conference , pp. 2478-2483
    • Leonard, J.A.1    Kramer, M.A.2
  • 30
    • 0026135904 scopus 로고
    • Radial basis networks for classifying process faults
    • Leonard J.A., and Kramer M.A. (1991). Radial basis networks for classifying process faults, IEEE Control Systems Magazine 11(3): 31-38.
    • (1991) IEEE Control Systems Magazine , vol.11 , Issue.3 , pp. 31-38
    • Leonard, J.A.1    Kramer, M.A.2
  • 31
    • 0036501528 scopus 로고    scopus 로고
    • Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where 'unknown' faults may occur
    • Li Y., Pont M. J. and Jones N.B. (2002). Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where 'unknown' faults may occur. Pattern Recognition Letters 23(5): 569-577.
    • (2002) Pattern Recognition Letters , vol.23 , Issue.5 , pp. 569-577
    • Li, Y.1    Pont, M.J.2    Jones, N.B.3
  • 32
    • 35748971790 scopus 로고    scopus 로고
    • Nonlinear Estimators and tail bounds for dimension reduction in 11 using Cauchy random projections
    • Li P., Hastie T.J. and Church K.W. (2007). Nonlinear Estimators and tail bounds for dimension reduction in 11 using Cauchy random projections, The Journal of Machine Learning Research 8(10): 2497-2532.
    • (2007) The Journal of Machine Learning Research , vol.8 , Issue.10 , pp. 2497-2532
    • Li, P.1    Hastie, T.J.2    Church, K.W.3
  • 33
    • 58149177386 scopus 로고    scopus 로고
    • Sub-Gaussian random projections, Technical report, Stanford University
    • Li P., Hastie T.J. and Church K.W. (2006). Sub-Gaussian random projections, Technical report, Stanford University.
    • (2006)
    • Li, P.1    Hastie, T.J.2    Church, K.W.3
  • 34
    • 0036565037 scopus 로고    scopus 로고
    • Density estimation and random variate generation using multilayer networks
    • Magdon-Ismail M. and Atiya A. (2002). Density estimation and random variate generation using multilayer networks, IEEE Transactions on Neural Networks 13(3): 497-520.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 497-520
    • Magdon-Ismail, M.1    Atiya, A.2
  • 35
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • Moody J. and Darken CJ. (1989). Fast learning in networks of locally tuned processing units, Neural Computation 1(2): 281-294.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 38
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E. (1962). On estimation of a probability density function and mode, Annals of Mathematical Statistics 33(3): 1065-1076.
    • (1962) Annals of Mathematical Statistics , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 39
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T. and Girosi F. (1990). Networks for approximation and learning, Proceedings of the IEEE 78(9): 484-1487.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 484-1487
    • Poggio, T.1    Girosi, F.2
  • 40
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • J.C. Mason, M.G. Cox, Eds, Clarendon Press, Oxford, pp
    • Powell M.J.D. (1987). Radial basis functions for multivariable interpolation: A review, in (J.C. Mason, M.G. Cox, Eds.) Algorithms for Approximation, Clarendon Press, Oxford, pp. 143-167.
    • (1987) Algorithms for Approximation , pp. 143-167
    • Powell, M.J.D.1
  • 41
    • 33746223526 scopus 로고    scopus 로고
    • RBF nets in fault localization
    • 8th International Conference on Artificial Intelligence and Soft Computing, ICAISC, Zakopane, Poland, Springer-Verlag, Berlin/Heidelberg
    • Rafajłlowicz E. (2006). RBF nets in fault localization, 8th International Conference on Artificial Intelligence and Soft Computing - ICAISC 2006. Zakopane, Poland, LNCS, Springer-Verlag, Berlin/Heidelberg, 4029/2006: 113-122.
    • (2006) LNCS , vol.4029 , Issue.2006 , pp. 113-122
    • Rafajłlowicz, E.1
  • 43
    • 0034313895 scopus 로고    scopus 로고
    • Extreme value statistics for novelty detection in biomedical data processing
    • Roberts S. (2000). Extreme value statistics for novelty detection in biomedical data processing, IEE Proceedings: Science, Measurement and Technology 147 (6): 363-367.
    • (2000) IEE Proceedings: Science, Measurement and Technology , vol.147 , Issue.6 , pp. 363-367
    • Roberts, S.1
  • 44
    • 0026953153 scopus 로고
    • Mapping neural networks derived from the Parzen window estimator
    • Schlorer H. and Hartman U. (1992). Mapping neural networks derived from the Parzen window estimator, Neural Networks 5(6): 903-909.
    • (1992) Neural Networks , vol.5 , Issue.6 , pp. 903-909
    • Schlorer, H.1    Hartman, U.2
  • 45
    • 9444226503 scopus 로고    scopus 로고
    • On using space-filling curves and vector quantization for constructing multidimensional control charts
    • Zakopane, Poland, pp
    • Skubalska-Rafajłlowicz E. (2000). On using space-filling curves and vector quantization for constructing multidimensional control charts, Proceedings of the 5th on Conference Neural Network and Soft Computing, Zakopane, Poland, pp. 162-167.
    • (2000) Proceedings of the 5th on Conference Neural Network and Soft Computing , pp. 162-167
    • Skubalska-Rafajłlowicz, E.1
  • 46
    • 33746263239 scopus 로고    scopus 로고
    • RBF neural network for probability density function estimation and detecting changes in multivariate processes
    • 8th International Conference: Artificial Intelligence and Soft Computing, ICAISC, Zakopane, Poland, Springer-Verlag, Berlin/Heidelberg
    • Skubalska-Rafajłlowicz E. (2006a). RBF neural network for probability density function estimation and detecting changes in multivariate processes, 8th International Conference: Artificial Intelligence and Soft Computing - ICAISC 2006. Zakopane, Poland, LNCS, Springer-Verlag, Berlin/Heidelberg 4029/2006: 133-141.
    • (2006) LNCS , vol.4029 , Issue.2006 , pp. 133-141
    • Skubalska-Rafajłlowicz, E.1
  • 48
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht D.F. (1990). Probabilistic neural networks, Neural Networks 3(1): 109-118.
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 49
    • 14844315829 scopus 로고    scopus 로고
    • American Mathematical Society, Providence, RI
    • Vempala S. (2004). The Random Projection Method, American Mathematical Society, Providence, RI.
    • (2004) The Random Projection Method
    • Vempala, S.1
  • 50
    • 0000517353 scopus 로고
    • Improving the performance of radial basis function networks by learning center locations
    • B. Spatz, Ed, Morgan Kaufmann, San Mateo, CA
    • Wettschereck D. and Dietterich T. (1992). Improving the performance of radial basis function networks by learning center locations, in (B. Spatz, Ed.) Advances in Neural Information Processing Systems, Morgan Kaufmann, San Mateo, CA, Vol. 4, pp. 1133-1140.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 1133-1140
    • Wettschereck, D.1    Dietterich, T.2
  • 51
    • 0017022844 scopus 로고
    • A survey of design methods for failure detection in dynamic systems
    • Willsky A. S. (1976). A survey of design methods for failure detection in dynamic systems, Automatica 12(6): 601-611.
    • (1976) Automatica , vol.12 , Issue.6 , pp. 601-611
    • Willsky, A.S.1
  • 52
    • 0028341934 scopus 로고
    • On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size
    • Xu L., Krzyzak A. and Yuille A. (1994). On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size, Neural Networks 7(4): 609-628.
    • (1994) Neural Networks , vol.7 , Issue.4 , pp. 609-628
    • Xu, L.1    Krzyzak, A.2    Yuille, A.3
  • 54
    • 0035272084 scopus 로고    scopus 로고
    • Self-organising mixture networks for probability density estimation
    • Yin H. and Allinson N.M. (2001). Self-organising mixture networks for probability density estimation, IEEE Transactions on Neural Networks 12(2): 405-411.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.2 , pp. 405-411
    • Yin, H.1    Allinson, N.M.2
  • 55
    • 0037349382 scopus 로고    scopus 로고
    • Using novelty detection to identify abnormalities caused by mean shifts in bivariate processes
    • Zorriassatine F., Tannock J.D.T. and O'Brien C. (2003). Using novelty detection to identify abnormalities caused by mean shifts in bivariate processes, Computers and Industrial Engineering 44(3): 385-408.
    • (2003) Computers and Industrial Engineering , vol.44 , Issue.3 , pp. 385-408
    • Zorriassatine, F.1    Tannock, J.D.T.2    O'Brien, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.