-
1
-
-
0032473509
-
-
(a) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388.
-
(1998)
Angew. Chem., Int. Ed
, vol.37
, pp. 388
-
-
Corey, E.J.1
Guzman-Perez, A.2
-
2
-
-
0001521888
-
-
(b) Fuji, K. Chem. Rev. 1993, 93, 2037.
-
(1993)
Chem. Rev
, vol.93
, pp. 2037
-
-
Fuji, K.1
-
3
-
-
0035905575
-
-
(c) Christoffers, J.; Mann, A. Angew. Chem., Int. Ed. 2001, 40, 4591.
-
(2001)
Angew. Chem., Int. Ed
, vol.40
, pp. 4591
-
-
Christoffers, J.1
Mann, A.2
-
5
-
-
0347131100
-
-
(e) Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed. 2004, 43, 284.
-
(2004)
Angew. Chem., Int. Ed
, vol.43
, pp. 284
-
-
Ramon, D.J.1
Yus, M.2
-
10
-
-
0029081258
-
-
camptothecins, For examples, see: a
-
For examples, see: (a) Pommier, Y.; Kohlhagen, G.; Kohn, K. W.; Leteurtre, F.; Wani, M. C.; Wall, M. E. Proc. Natl Acad. Sci. U.S.A. 1995, 92, 8861 (camptothecins).
-
(1995)
Proc. Natl Acad. Sci. U.S.A
, vol.92
, pp. 8861
-
-
Pommier, Y.1
Kohlhagen, G.2
Kohn, K.W.3
Leteurtre, F.4
Wani, M.C.5
Wall, M.E.6
-
12
-
-
33746789411
-
-
HCV RNA polymerase inhibitors, For example, see
-
For example, see: Li, H.; Tatlock, J.; Linton, A.; Gonzalez, J.; Borchardt, A.; Dragovich, P.; Jewell, T.; Prins, T.; Zhou, R.; Blazel, J.; Parge, H.; Love, R.; Hickey, M.; Doan, C.; Shi, S.; Duggal, R.; Lewisc, C.; Fuhrman, S. Bioorg. Med. Chem. Lett. 2006, 16, 4834 (HCV RNA polymerase inhibitors).
-
(2006)
Bioorg. Med. Chem. Lett
, vol.16
, pp. 4834
-
-
Li, H.1
Tatlock, J.2
Linton, A.3
Gonzalez, J.4
Borchardt, A.5
Dragovich, P.6
Jewell, T.7
Prins, T.8
Zhou, R.9
Blazel, J.10
Parge, H.11
Love, R.12
Hickey, M.13
Doan, C.14
Shi, S.15
Duggal, R.16
Lewisc, C.17
Fuhrman, S.18
-
13
-
-
0003497902
-
-
For reviews of hetero-Diels-Alder reactions, see: a, Wiley-VCH: Weinheim, Germany
-
For reviews of hetero-Diels-Alder reactions, see: (a) Kobayashi, S.; Jørgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002.
-
(2002)
Cycloaddition Reactions in Organic Synthesis
-
-
Kobayashi, S.1
Jørgensen, K.A.2
-
18
-
-
0034811817
-
-
and references cited therein. For examples, see: a
-
For examples, see: (a) Doyle, M. P.; Phillips, I. M.; Hu, W. J. Am. Chem. Soc. 2001, 123, 5366, and references cited therein.
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 5366
-
-
Doyle, M.P.1
Phillips, I.M.2
Hu, W.3
-
19
-
-
45549090307
-
-
(b) Yang, X.-B.; Feng, J.; Zhang, J.; Wang, N.; Wang, L.; Liu, J.-L.; Yu, X.-Q. Org. Lett. 2008, 10, 1299.
-
(2008)
Org. Lett
, vol.10
, pp. 1299
-
-
Yang, X.-B.1
Feng, J.2
Zhang, J.3
Wang, N.4
Wang, L.5
Liu, J.-L.6
Yu, X.-Q.7
-
20
-
-
53749101791
-
-
and references cited therein
-
(c) Du, H.; Zhang, X.; Wang, Z.; Bao, H.; You, T.; Ding, K. Eur. J. Org. Chem. 2008, 2248, and references cited therein.
-
(2008)
Eur. J. Org. Chem
, pp. 2248
-
-
Du, H.1
Zhang, X.2
Wang, Z.3
Bao, H.4
You, T.5
Ding, K.6
-
21
-
-
0032475445
-
-
(a) Yao, S.; Johannsen, M.; Audrain, H.; Hazell, R. G.; Jørgensen, K. A. J. Am. Chem. Soc. 1998, 120, 8599.
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 8599
-
-
Yao, S.1
Johannsen, M.2
Audrain, H.3
Hazell, R.G.4
Jørgensen, K.A.5
-
23
-
-
0037083878
-
-
(c) Dalko, P. I.; Moisan, L.; Cossy, J. Angew. Chem., Int. Ed. 2002, 41, 625.
-
(2002)
Angew. Chem., Int. Ed
, vol.41
, pp. 625
-
-
Dalko, P.I.1
Moisan, L.2
Cossy, J.3
-
24
-
-
0037629594
-
-
(d) Furuno, H.; Kambara, T.; Tanaka, Y.; Hanamoto, T.; Kagawa, T.; Inanaga, J. Tetrahedron Lett. 2003, 44, 6129.
-
(2003)
Tetrahedron Lett
, vol.44
, pp. 6129
-
-
Furuno, H.1
Kambara, T.2
Tanaka, Y.3
Hanamoto, T.4
Kagawa, T.5
Inanaga, J.6
-
25
-
-
26444603041
-
-
(e) Zhuang, W.; Poulsen, T. B.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 3284.
-
(2005)
Org. Biomol. Chem
, vol.3
, pp. 3284
-
-
Zhuang, W.1
Poulsen, T.B.2
Jørgensen, K.A.3
-
26
-
-
33646746416
-
-
(f) Akullian, L. C.; Snapper, M. C.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128, 6532.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 6532
-
-
Akullian, L.C.1
Snapper, M.C.2
Hoveyda, A.H.3
-
27
-
-
33846044748
-
-
(g) Landa, A.; Richter, B.; Johansen, R. L.; Minkkilä, A.; Jørgensen, K. A. J. Org. Chem. 2007, 72, 240.
-
(2007)
J. Org. Chem
, vol.72
, pp. 240
-
-
Landa, A.1
Richter, B.2
Johansen, R.L.3
Minkkilä, A.4
Jørgensen, K.A.5
-
28
-
-
33744809250
-
-
For a racemic example using ketones, see
-
For a racemic example using ketones, see: Liu, J.; Li, X.; Wang, J.; Feng, X. Adv. Synth. Catal. 2006, 348, 939.
-
(2006)
Adv. Synth. Catal
, vol.348
, pp. 939
-
-
Liu, J.1
Li, X.2
Wang, J.3
Feng, X.4
-
32
-
-
0018784174
-
-
Danishefsky, S.; Kitahara, T.; Yan, C. F.; Morris, J. J. Am. Chem. Soc. 1979, 101, 6996.
-
(1979)
J. Am. Chem. Soc
, vol.101
, pp. 6996
-
-
Danishefsky, S.1
Kitahara, T.2
Yan, C.F.3
Morris, J.4
-
33
-
-
0037620632
-
-
(a) Oisaki, K.; Suto, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 5644.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 5644
-
-
Oisaki, K.1
Suto, Y.2
Kanai, M.3
Shibasaki, M.4
-
34
-
-
33744923178
-
-
(b) Oisaki, K.; Zhao, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 7164.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 7164
-
-
Oisaki, K.1
Zhao, D.2
Kanai, M.3
Shibasaki, M.4
-
35
-
-
0345195964
-
-
For pioneering studies on transmetalation from a silyl enolate to a copper enolate, see
-
For pioneering studies on transmetalation from a silyl enolate to a copper enolate, see: Pagenkopf, B. L.; Krüger, J.; Stojanovic, A.; Carreira, E. M. Angew. Chem., Int. Ed. 1998, 37, 3124.
-
(1998)
Angew. Chem., Int. Ed
, vol.37
, pp. 3124
-
-
Pagenkopf, B.L.1
Krüger, J.2
Stojanovic, A.3
Carreira, E.M.4
-
36
-
-
61349160233
-
-
2 catalyst.
-
2 catalyst.
-
-
-
-
37
-
-
33746892455
-
-
Pilcher, A. S.; Ammon, H. L.; DeShong, P. J. Am. Chem. Soc. 1995, 117, 5166.
-
(1995)
J. Am. Chem. Soc
, vol.117
, pp. 5166
-
-
Pilcher, A.S.1
Ammon, H.L.2
DeShong, P.3
-
38
-
-
61349091996
-
-
The results of Table 1, entries 2-5, suggest that the tetrabutylammonium cation facilitates the catalytic cycle. The fact that 3a was obtained in 90% yield with CuF·3PPh3·2EtOH-tol-BINAP catalyst (10 mol , in the presence of 30 mol, of Bu4N·BF4 (cf. 43% yield in the absence of Bu4N·BF4, Table 1, entry 2) supports this consideration. We assume that the tetrabutylammonium cation facilitates the catalyst regeneration step from intermediate 6 via ion exchange. See the Supporting Information for detailed discussion
-
4, Table 1, entry 2) supports this consideration. We assume that the tetrabutylammonium cation facilitates the catalyst regeneration step from intermediate 6 via ion exchange. See the Supporting Information for detailed discussion.
-
-
-
-
39
-
-
15744387149
-
-
Triphenylphosphine oxide would coordinate to the silicon atom and generate a pentacoordinated silicon. This species is more Lewis acidic than the original tetracoordinated silicon (for a leading reference, see: Denmark, S. E, Beutner, G. L, Wynn, T, Eastgate, M. D J. Am. Chem. Soc. 2005, 127, 3774, and should readily accept the counterion (fluoride or alkoxide) of copper. Because copper silicate formation is the initiating step of transmetalation between silicon and copper, formation of a pentacoordinated silicon would facilitate the active copper enolate formation from 1a and 1b. See the Supporting Information for details
-
Triphenylphosphine oxide would coordinate to the silicon atom and generate a pentacoordinated silicon. This species is more Lewis acidic than the original tetracoordinated silicon (for a leading reference, see: Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate, M. D J. Am. Chem. Soc. 2005, 127, 3774.), and should readily accept the counterion (fluoride or alkoxide) of copper. Because copper silicate formation is the initiating step of transmetalation between silicon and copper, formation of a pentacoordinated silicon would facilitate the active copper enolate formation from 1a and 1b. See the Supporting Information for details.
-
-
-
-
40
-
-
0026418434
-
-
Trost, B. M. Science 1991, 254, 1471.
-
(1991)
Science
, vol.254
, pp. 1471
-
-
Trost, B.M.1
-
41
-
-
61349107613
-
-
See the Supporting Information for details
-
See the Supporting Information for details.
-
-
-
-
42
-
-
61349196097
-
-
Using 1a and a stoichiometric amount of (EtO)3SiF produced comparable yields and enantioselectivities to the simplified method with 1b shown in Table 3. The observed comparable enantioselectivities between the two methods strongly support that the actual active species is the identical copper enolate, which is generated through transmetalation of the siloxy dienes
-
3SiF produced comparable yields and enantioselectivities to the simplified method with 1b shown in Table 3. The observed comparable enantioselectivities between the two methods strongly support that the actual active species is the identical copper enolate, which is generated through transmetalation of the siloxy dienes.
-
-
-
-
43
-
-
61349186660
-
-
Interestingly, the aryl group, which is bulkier than the methyl group, exists at the axial position in this crystal structure
-
Interestingly, the aryl group, which is bulkier than the methyl group, exists at the axial position in this crystal structure.
-
-
-
|