메뉴 건너뛰기




Volumn , Issue , 2008, Pages 411-416

Combining hierarchical inference in ontologies with heterogeneous data sources improves gene function prediction

Author keywords

[No Author keywords available]

Indexed keywords

BIOINFORMATICS; FLOW INTERACTIONS; FUNCTIONS; INTEGRATION; PROBABILITY DENSITY FUNCTION;

EID: 58149143138     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBM.2008.37     Document Type: Conference Paper
Times cited : (3)

References (13)
  • 1
    • 85142125739 scopus 로고    scopus 로고
    • Z. Barutcuoglu, S. R. E, and T. O. G. Hierarchical multi-label prediction of gene function. Bioinformatics, 22:830-836, 2006.
    • Z. Barutcuoglu, S. R. E, and T. O. G. Hierarchical multi-label prediction of gene function. Bioinformatics, 22:830-836, 2006.
  • 3
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, IT-14(3):462-467, 1968.
    • (1968) IEEE Transactions on Information Theory , vol.IT-14 , Issue.3 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 4
    • 3142622851 scopus 로고    scopus 로고
    • An integrated analysis of protein function prediction
    • M. Deng, T. Chen, and F. Sun. An integrated analysis of protein function prediction. Journal of Computational Biology, 11:463-475, 2004.
    • (2004) Journal of Computational Biology , vol.11 , pp. 463-475
    • Deng, M.1    Chen, T.2    Sun, F.3
  • 6
    • 51749110896 scopus 로고    scopus 로고
    • Integration of relational and hierarchical network information for protein function prediction
    • X. Jiang, N. Nariai, M. Steffen, S. Kasif, and E. D. Kolaczyk. Integration of relational and hierarchical network information for protein function prediction. BMC Bioinformatics, 9:350, 2008.
    • (2008) BMC Bioinformatics , vol.9 , pp. 350
    • Jiang, X.1    Nariai, N.2    Steffen, M.3    Kasif, S.4    Kolaczyk, E.D.5
  • 8
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • I. Lee, S. V. Date, A. T. Adai, and E. M. Marcotte. A probabilistic functional network of yeast genes. Science, 306:1555-1558, 2004.
    • (2004) Science , vol.306 , pp. 1555-1558
    • Lee, I.1    Date, S.V.2    Adai, A.T.3    Marcotte, E.M.4
  • 9
    • 1542271409 scopus 로고    scopus 로고
    • Predicting protein function from protein/protein interaction data: A probabilistic approach
    • S. Letovsky and S. Kasif. Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics, 19:i197-i204, 2003.
    • (2003) Bioinformatics , vol.19
    • Letovsky, S.1    Kasif, S.2
  • 10
    • 13444249988 scopus 로고    scopus 로고
    • String: Known and predicted protein-protein associations, integrated and transferred across organisms
    • C. V. Mering, L. J. Jensen, B. Snel, and et al. String: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Research, 33:D433-D437, 2005.
    • (2005) Nucleic Acids Research , vol.33
    • Mering, C.V.1    Jensen, L.J.2    Snel, B.3    and et, al.4
  • 11
    • 55449131589 scopus 로고    scopus 로고
    • Probabilistic protein function prediction from heterogeneous genome-wide data
    • N. Nariai, E. D. Kolaczyk, and S. Kasif. Probabilistic protein function prediction from heterogeneous genome-wide data. PLoS ONE, 2(3):e337, 2007.
    • (2007) PLoS ONE , vol.2 , Issue.3
    • Nariai, N.1    Kolaczyk, E.D.2    Kasif, S.3
  • 12
    • 33750304849 scopus 로고    scopus 로고
    • Gene function classification using bayesian models with hierarchy-based priors
    • B. Shahbaba andM. Neal. Gene function classification using bayesian models with hierarchy-based priors. BMC Bioinformatics, 7:448, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 448
    • Shahbaba andM, B.1    Neal2
  • 13
    • 0038492417 scopus 로고    scopus 로고
    • A bayesian framework for combining heterogeneous data sources for gene function prediction (in saccharomyces cerevisiae)
    • O. G. Troyanskaya, K. Dolinski, A. B. Owen, R. B. Altman, and B. D. A bayesian framework for combining heterogeneous data sources for gene function prediction (in saccharomyces cerevisiae). Proc natl Acad Sci USA, 100:8348-8353, 2003.
    • (2003) Proc natl Acad Sci USA , vol.100 , pp. 8348-8353
    • Troyanskaya, O.G.1    Dolinski, K.2    Owen, A.B.3    Altman, R.B.4    D, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.