메뉴 건너뛰기




Volumn 25, Issue 1, 2009, Pages 42-47

Shortest path analysis using partial correlations for classifying gene functions from gene expression data

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CLASSIFICATION ALGORITHM; CONTROLLED STUDY; CORRELATION ANALYSIS; GENE EXPRESSION; GENE FUNCTION; GENE SEQUENCE; KERNEL METHOD; NONHUMAN; PRIORITY JOURNAL; SACCHAROMYCES CEREVISIAE; SEQUENCE ANALYSIS; STATISTICAL MODEL;

EID: 58049217446     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btn574     Document Type: Article
Times cited : (8)

References (18)
  • 1
    • 0037399814 scopus 로고    scopus 로고
    • Deduction of a gene regulatory relationship framework from gene expression data by the application of graphical Gaussian modeling
    • Aburatani,S. et al. (2003) Deduction of a gene regulatory relationship framework from gene expression data by the application of graphical Gaussian modeling. Signal Proc., 83, 777-788.
    • (2003) Signal Proc , vol.83 , pp. 777-788
    • Aburatani, S.1
  • 2
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • Banerjee,O. et al. (2008) Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res., 9, 485-516.
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 485-516
    • Banerjee, O.1
  • 3
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlations coefficients
    • de la Fuente,A. et al. (2004) Discovery of meaningful associations in genomic data using partial correlations coefficients. Bioinformatics, 20, 3565-3574.
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • de la Fuente, A.1
  • 4
    • 0001038826 scopus 로고
    • Covariance selection
    • Dempster,A. (1972) Covariance selection. Biometrics, 28, 157-175.
    • (1972) Biometrics , vol.28 , pp. 157-175
    • Dempster, A.1
  • 5
    • 34147120474 scopus 로고
    • A note on two problems in connection with graphs
    • Dijkstra,E. (1959) A note on two problems in connection with graphs. Numer. Math., 1, 269-271.
    • (1959) Numer. Math , vol.1 , pp. 269-271
    • Dijkstra, E.1
  • 6
    • 41549097939 scopus 로고    scopus 로고
    • Bayesian covariance selection
    • Technical report. Department of Statistical Science, Duke University
    • Dobra,A. and West,M. (2004) Bayesian covariance selection. Technical report. Department of Statistical Science, Duke University.
    • (2004)
    • Dobra, A.1    West, M.2
  • 7
    • 15944399178 scopus 로고    scopus 로고
    • Sparse graphical models for exploring gene expression data
    • Dobra,A. et al. (2004) Sparse graphical models for exploring gene expression data. J. Multivar. Anal., 90, 196-212.
    • (2004) J. Multivar. Anal , vol.90 , pp. 196-212
    • Dobra, A.1
  • 8
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman,J. et al. (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1
  • 9
    • 0034616930 scopus 로고    scopus 로고
    • Functional discovery via a compendium of expression profiles
    • Hughes,T.R. et al. (2000) Functional discovery via a compendium of expression profiles. Cell, 102, 109-126.
    • (2000) Cell , vol.102 , pp. 109-126
    • Hughes, T.R.1
  • 10
    • 33646232724 scopus 로고    scopus 로고
    • Graphical Gaussian modeling for gene association structures based on expression deviation patterns induced by various chemical stimuli
    • Matusno,T. et al. (2006) Graphical Gaussian modeling for gene association structures based on expression deviation patterns induced by various chemical stimuli. IEICE T. Inf. Syst., E89-D, 1563-1574.
    • (2006) IEICE T. Inf. Syst , vol.E89-D , pp. 1563-1574
    • Matusno, T.1
  • 11
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinhausen,N. and Bühlmann,Y. (2006) High-dimensional graphs and variable selection with the lasso. Ann. Star., 34, 1436-1462.
    • (2006) Ann. Star , vol.34 , pp. 1436-1462
    • Meinhausen, N.1    Bühlmann, Y.2
  • 12
    • 34548106491 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high dimensional data
    • Technical report. Department of Statistics, UC Berkeley
    • Meinhausen,N. and Yu,B. (2006) Lasso-type recovery of sparse representations for high dimensional data. Technical report. Department of Statistics, UC Berkeley.
    • (2006)
    • Meinhausen, N.1    Yu, B.2
  • 13
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • Article
    • Schäfer,J. and Strimmer,K. (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol., 4. Article 32.
    • (2005) Stat. Appl. Genet. Mol. Biol , vol.4 , pp. 32
    • Schäfer, J.1    Strimmer, K.2
  • 14
    • 46749151407 scopus 로고    scopus 로고
    • Weighted lasso in graphical gaussian modeling for large gene network estimation based on microarray data
    • Shimamura,T. et al. (2007) Weighted lasso in graphical gaussian modeling for large gene network estimation based on microarray data. Jap. Sac. Bioinform., pp. 142-153.
    • (2007) Jap. Sac. Bioinform , pp. 142-153
    • Shimamura, T.1
  • 15
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani,R. (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 58, 267-288.
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 16
    • 0036191190 scopus 로고    scopus 로고
    • Inference of a genetic network by a combined approach of cluster analysis and graphical gaussian modeling
    • Toh,H. and Horimoto,K. (2002) Inference of a genetic network by a combined approach of cluster analysis and graphical gaussian modeling. Bioinformatics, 18, 287-297.
    • (2002) Bioinformatics , vol.18 , pp. 287-297
    • Toh, H.1    Horimoto, K.2
  • 17
    • 22044448669 scopus 로고    scopus 로고
    • Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana
    • Wille,A. et al. (2004) Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol., 5, R92.
    • (2004) Genome Biol , vol.5
    • Wille, A.1
  • 18
    • 0036790999 scopus 로고    scopus 로고
    • Transitive functional annotation by shortest-path analysis of gene expression data
    • Zhou,X. et al. (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc. Natl Acad. Sci. USA, 99, 12783-12788.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 12783-12788
    • Zhou, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.