메뉴 건너뛰기




Volumn 3, Issue , 2008, Pages 1513-1518

Learning and inference with constraints

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX DECISIONS; DEPENDENCY STRUCTURES; MACHINE LEARNING RESEARCHES; PROBABILISTIC MODELS; REAL WORLDS; UNLABELED DATUMS;

EID: 57749106432     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (48)

References (19)
  • 1
    • 84858412595 scopus 로고    scopus 로고
    • Aggregation via Set Partitioning for Natural Language Generation
    • Barzilay, R., and Lapata, M. 2006. Aggregation via Set Partitioning for Natural Language Generation. In Proc. of HLT/NAACL.
    • (2006) Proc. of HLT/NAACL
    • Barzilay, R.1    Lapata, M.2
  • 2
    • 57749120009 scopus 로고    scopus 로고
    • Guiding semi-supervision with constraint-driven learning
    • Chang, M.; Ratinov, L.; and Roth, D. 2007. Guiding semi-supervision with constraint-driven learning. In ACL.
    • (2007) ACL
    • Chang, M.1    Ratinov, L.2    Roth, D.3
  • 4
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms
    • Collins, M. 2002. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Proc. of EMNLP.
    • (2002) Proc. of EMNLP
    • Collins, M.1
  • 5
    • 29344463007 scopus 로고    scopus 로고
    • Mixtures of deterministic- probabilistic networks and their AND/OR search space
    • Arlington, Virginia, United States: AUAI Press
    • Dechter, R., and Mateescu, R. 2004. Mixtures of deterministic- probabilistic networks and their AND/OR search space. In Proceedings of AUAI, 120-129. Arlington, Virginia, United States: AUAI Press.
    • (2004) Proceedings of AUAI , pp. 120-129
    • Dechter, R.1    Mateescu, R.2
  • 6
    • 84859881704 scopus 로고    scopus 로고
    • Unsupervised learning of field segmentation models for information extraction
    • Grenager, T.; Klein, D.; and Manning, C. 2005. Unsupervised learning of field segmentation models for information extraction. In Proc. of ACL.
    • (2005) In Proc. of ACL
    • Grenager, T.1    Klein, D.2    Manning, C.3
  • 7
    • 80055034798 scopus 로고    scopus 로고
    • Generalized inference with multiple semantic role labeling systems (shared task paper)
    • Koomen, P.; Punyakanok, V.; Roth, D.; and Yih, W. 2005. Generalized inference with multiple semantic role labeling systems (shared task paper). In Proc. of the CoNLL.
    • (2005) Proc. of the CoNLL
    • Koomen, P.1    Punyakanok, V.2    Roth, D.3    Yih, W.4
  • 8
    • 84862276326 scopus 로고    scopus 로고
    • Beyond the Pipeline: Discrete Optimization in NLP
    • Marciniak, T., and Strube, M. 2005. Beyond the Pipeline: Discrete Optimization in NLP. In Proc. of the CoNLL.
    • (2005) Proc. of the CoNLL
    • Marciniak, T.1    Strube, M.2
  • 9
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam, K.; McCallum, A.; Thrun, S.; and Mitchell, T. 2000. Text classification from labeled and unlabeled documents using EM. Machine Learning 39(2/3).
    • (2000) Machine Learning , vol.39 , Issue.2-3
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 10
    • 33645983416 scopus 로고    scopus 로고
    • The Proposition Bank: An Annotated Corpus of Semantic Roles
    • Palmer, M.; Gildea, D.; and Kingsbury, P. 2005. The Proposition Bank: An Annotated Corpus of Semantic Roles. Computational Linguistics 31(1):71-106.
    • (2005) Computational Linguistics , vol.31 , Issue.1 , pp. 71-106
    • Palmer, M.1    Gildea, D.2    Kingsbury, P.3
  • 11
    • 29244464687 scopus 로고    scopus 로고
    • Information extraction from research papers using conditional random fields
    • Peng, F., and McCallum, A. 2006. Information extraction from research papers using conditional random fields. Inf. Process. Manage. 42(4):963-979.
    • (2006) Inf. Process. Manage , vol.42 , Issue.4 , pp. 963-979
    • Peng, F.1    McCallum, A.2
  • 13
    • 84880754776 scopus 로고    scopus 로고
    • The Necessity of Syntactic Parsing for Semantic Role Labeling
    • Punyakanok, V.; Roth, D.; and Yih, W. 2005. The Necessity of Syntactic Parsing for Semantic Role Labeling. In Proc. Of IJCAI.
    • (2005) Proc. Of IJCAI
    • Punyakanok, V.1    Roth, D.2    Yih, W.3
  • 14
    • 45749086553 scopus 로고    scopus 로고
    • The importance of syntactic parsing and inference in semantic role labeling
    • Punyakanok, V.; Roth, D.; and Yih, W. 2008. The importance of syntactic parsing and inference in semantic role labeling. Computational Linguistics 34(2).
    • (2008) Computational Linguistics , vol.34 , Issue.2
    • Punyakanok, V.1    Roth, D.2    Yih, W.3
  • 15
    • 47749138183 scopus 로고    scopus 로고
    • Modeling Discriminative Global Inference
    • IEEE
    • Rizzolo, N., and Roth, D. 2007. Modeling Discriminative Global Inference. In Proc. of the ICSC, 597-604. IEEE.
    • (2007) Proc. of the ICSC , pp. 597-604
    • Rizzolo, N.1    Roth, D.2
  • 16
    • 85093033694 scopus 로고    scopus 로고
    • A linear programming formulation for global inference in natural language tasks
    • Ng, H. T, and Riloff, E, eds, Association for Computational Linguistics
    • Roth, D., and Yih, W. 2004. A linear programming formulation for global inference in natural language tasks. In Ng, H. T., and Riloff, E., eds., Proc. of the Annual Conference on Computational Natural Language Learning (CoNLL), 1-8. Association for Computational Linguistics.
    • (2004) Proc. of the Annual Conference on Computational Natural Language Learning (CoNLL) , pp. 1-8
    • Roth, D.1    Yih, W.2
  • 17
    • 31844450331 scopus 로고    scopus 로고
    • Integer Linear Programming Inference for Conditional Random Fields
    • Roth, D., and Yih, W. 2005. Integer Linear Programming Inference for Conditional Random Fields. In Proc. of ICML.
    • (2005) Proc. of ICML
    • Roth, D.1    Yih, W.2
  • 18
    • 37849051438 scopus 로고    scopus 로고
    • Global inference for entity and relation identification via a linear programming formulation
    • Getoor, L, and Taskar, B, eds, MIT Press
    • Roth, D., and Yih, W. 2007. Global inference for entity and relation identification via a linear programming formulation. In Getoor, L., and Taskar, B., eds., Introduction to Statistical Relational Learning. MIT Press.
    • (2007) Introduction to Statistical Relational Learning
    • Roth, D.1    Yih, W.2
  • 19
    • 84880673754 scopus 로고    scopus 로고
    • Learning in natural language
    • Roth, D. 1999. Learning in natural language. In Proc. of IJCAI.
    • (1999) Proc. of IJCAI
    • Roth, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.