메뉴 건너뛰기




Volumn , Issue , 2008, Pages 38-43

Context of the concept drift in data mining: an empirical study on the regional economic influence to the relation between demographic attributes and credit card holder's loyalty

Author keywords

Concept drift; Context factor; Customer loyalty; Data mining

Indexed keywords

INFORMATION MANAGEMENT; MANAGEMENT SCIENCE; REGIONAL PLANNING;

EID: 57649227490     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMSE.2008.4668891     Document Type: Conference Paper
Times cited : (3)

References (21)
  • 2
    • 57649142852 scopus 로고    scopus 로고
    • M.G. Kelly, D. J. Hand, N. M. Adams. The impact of changing populations on classifier performance[C]// Volkmar ed. Conference on Knowledge Discovery in Data, Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining., San Diego, California, United States, 1999:332-339.
    • M.G. Kelly, D. J. Hand, N. M. Adams. The impact of changing populations on classifier performance[C]// Volkmar ed. Conference on Knowledge Discovery in Data, Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining., San Diego, California, United States, 1999:332-339.
  • 3
    • 57649142854 scopus 로고
    • Incremental learning from noisy data[J]
    • J.C. Schlimmer, R.H.Granger. Incremental learning from noisy data[J]. Machine Learning, 1986, 13(3):297-309.
    • (1986) Machine Learning , vol.13 , Issue.3 , pp. 297-309
    • Schlimmer, J.C.1    Granger, R.H.2
  • 4
    • 11244279120 scopus 로고    scopus 로고
    • K. B. Pratt, G. Tschapek. Visualizing concept drift[C]//Petra ed. Conference on Knowledge Discovery in Data, Proceedings of the Ninth ACM SIGKDD International Conference on Kowledge Discovery and Data Mining, 2003:412-419.
    • K. B. Pratt, G. Tschapek. Visualizing concept drift[C]//Petra ed. Conference on Knowledge Discovery in Data, Proceedings of the Ninth ACM SIGKDD International Conference on Kowledge Discovery and Data Mining, 2003:412-419.
  • 5
    • 57649148138 scopus 로고    scopus 로고
    • G. Widmer, M. Kubat. Learning flexible concepts from streams of examples: FLORA2[C]// Fink ed. Proceedings of the European Conference on Artificial Intelligence. 1992:189-195.
    • G. Widmer, M. Kubat. Learning flexible concepts from streams of examples: FLORA2[C]// Fink ed. Proceedings of the European Conference on Artificial Intelligence. 1992:189-195.
  • 6
    • 57649157834 scopus 로고    scopus 로고
    • R. Klinkenberg, S. Ruping. Concept drift and the importance of examples[C]// Wysotzki F. ed. Text Mining - Theoretical Aspects and Applications, PhysicaVerlag, Heidelberg, Germany, 2003:78-84.
    • R. Klinkenberg, S. Ruping. Concept drift and the importance of examples[C]// Wysotzki F. ed. Text Mining - Theoretical Aspects and Applications, PhysicaVerlag, Heidelberg, Germany, 2003:78-84.
  • 9
    • 57649233818 scopus 로고    scopus 로고
    • R. Klinkenberg. Meta-Learning, model selection, and example selection in machine learning domains with concept drift[C]// Schadler K. ed. Annual workshop of the special interest group on machine learning, knowledge discovery, and data mining of the German Computer Science Society (Gl), Saarbrucken, Germany, 2005, 79-84.
    • R. Klinkenberg. Meta-Learning, model selection, and example selection in machine learning domains with concept drift[C]// Schadler K. ed. Annual workshop of the special interest group on machine learning, knowledge discovery, and data mining of the German Computer Science Society (Gl), Saarbrucken, Germany, 2005, 79-84.
  • 10
    • 77952415079 scopus 로고    scopus 로고
    • H.X. Wang, W. Fan, P. S. Yu, J.W. Han, Mining concept-drifting data streams using ensemble classifiers[C]// Furnkranz ed. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, D.C, 2003: 45-50.
    • H.X. Wang, W. Fan, P. S. Yu, J.W. Han, Mining concept-drifting data streams using ensemble classifiers[C]// Furnkranz ed. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, D.C, 2003: 45-50.
  • 11
    • 77952415079 scopus 로고    scopus 로고
    • H.Wang, W. Fan, P.S.Yu, J. Han. Mining concept-drifting data streams using ensemble classifiers[C]// Johannes and Grieser ed. Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, ACM Press, 2003:1002-1007.
    • H.Wang, W. Fan, P.S.Yu, J. Han. Mining concept-drifting data streams using ensemble classifiers[C]// Johannes and Grieser ed. Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, ACM Press, 2003:1002-1007.
  • 12
    • 22544451786 scopus 로고    scopus 로고
    • Learning Concept drift with a committee of decision trees [R]
    • Technical Report AI-03-302, Department of Computer Sciences, University of Texas at Austin, Austin, TX, USA
    • K.O. Stanley. Learning Concept drift with a committee of decision trees [R]. Technical Report AI-03-302, Department of Computer Sciences, University of Texas at Austin, Austin, TX, USA, 2003.
    • (2003)
    • Stanley, K.O.1
  • 13
    • 24644449205 scopus 로고    scopus 로고
    • Learning classification rules for telecom customer call data under concept drift[J]
    • M. Black, R. Hickey. Learning classification rules for telecom customer call data under concept drift[J]. Soft Computing, 2003, 8(2):102-108
    • (2003) Soft Computing , vol.8 , Issue.2 , pp. 102-108
    • Black, M.1    Hickey, R.2
  • 14
    • 26444562687 scopus 로고    scopus 로고
    • The problem of concept drift: Definitions and related work [R]
    • Technical Report TCD-CS-2004-15, Computer Science Department, Trinity College Dublin
    • A. Tsymbal. The problem of concept drift: Definitions and related work [R]. Technical Report TCD-CS-2004-15, Computer Science Department, Trinity College Dublin. 2004.
    • (2004)
    • Tsymbal, A.1
  • 16
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts [J]
    • G. Widmer, M. Kubat. Learning in the presence of concept drift and hidden contexts [J]. Machine Learning, 1996, 23(1):69-101.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 17
    • 0032139819 scopus 로고    scopus 로고
    • Extracting hidden context[J]
    • Michael Harries, Claude Sammut. Extracting hidden context[J]. Machine Learning, 1998, 25(2):101-126.
    • (1998) Machine Learning , vol.25 , Issue.2 , pp. 101-126
    • Harries, M.1    Sammut, C.2
  • 18
    • 57649211086 scopus 로고    scopus 로고
    • P.D. Turney. The identication of context-sensitive features: A formal denition of context for concept learning[C]// Trinity ed. 13th International Conference on Machine Learning, Bari, Italy. 1996:43-49.
    • P.D. Turney. The identication of context-sensitive features: A formal denition of context for concept learning[C]// Trinity ed. 13th International Conference on Machine Learning, Bari, Italy. 1996:43-49.
  • 19
    • 57649242210 scopus 로고    scopus 로고
    • Turney. The management of context-sensitive features: a review of strategies[C]// Gunter ed. 13th International Conference on Machine Learning, Bari, Italy. 1996:56-61.
    • Turney. The management of context-sensitive features: a review of strategies[C]// Gunter ed. 13th International Conference on Machine Learning, Bari, Italy. 1996:56-61.
  • 21
    • 0033439536 scopus 로고    scopus 로고
    • Whence consumer loyalty?[J]
    • R. L. Oliver. Whence consumer loyalty?[J]. Journal of Marketing, 1999, 63(1):34-44.
    • (1999) Journal of Marketing , vol.63 , Issue.1 , pp. 34-44
    • Oliver, R.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.