-
2
-
-
57649142852
-
-
M.G. Kelly, D. J. Hand, N. M. Adams. The impact of changing populations on classifier performance[C]// Volkmar ed. Conference on Knowledge Discovery in Data, Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining., San Diego, California, United States, 1999:332-339.
-
M.G. Kelly, D. J. Hand, N. M. Adams. The impact of changing populations on classifier performance[C]// Volkmar ed. Conference on Knowledge Discovery in Data, Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining., San Diego, California, United States, 1999:332-339.
-
-
-
-
3
-
-
57649142854
-
Incremental learning from noisy data[J]
-
J.C. Schlimmer, R.H.Granger. Incremental learning from noisy data[J]. Machine Learning, 1986, 13(3):297-309.
-
(1986)
Machine Learning
, vol.13
, Issue.3
, pp. 297-309
-
-
Schlimmer, J.C.1
Granger, R.H.2
-
4
-
-
11244279120
-
-
K. B. Pratt, G. Tschapek. Visualizing concept drift[C]//Petra ed. Conference on Knowledge Discovery in Data, Proceedings of the Ninth ACM SIGKDD International Conference on Kowledge Discovery and Data Mining, 2003:412-419.
-
K. B. Pratt, G. Tschapek. Visualizing concept drift[C]//Petra ed. Conference on Knowledge Discovery in Data, Proceedings of the Ninth ACM SIGKDD International Conference on Kowledge Discovery and Data Mining, 2003:412-419.
-
-
-
-
5
-
-
57649148138
-
-
G. Widmer, M. Kubat. Learning flexible concepts from streams of examples: FLORA2[C]// Fink ed. Proceedings of the European Conference on Artificial Intelligence. 1992:189-195.
-
G. Widmer, M. Kubat. Learning flexible concepts from streams of examples: FLORA2[C]// Fink ed. Proceedings of the European Conference on Artificial Intelligence. 1992:189-195.
-
-
-
-
6
-
-
57649157834
-
-
R. Klinkenberg, S. Ruping. Concept drift and the importance of examples[C]// Wysotzki F. ed. Text Mining - Theoretical Aspects and Applications, PhysicaVerlag, Heidelberg, Germany, 2003:78-84.
-
R. Klinkenberg, S. Ruping. Concept drift and the importance of examples[C]// Wysotzki F. ed. Text Mining - Theoretical Aspects and Applications, PhysicaVerlag, Heidelberg, Germany, 2003:78-84.
-
-
-
-
9
-
-
57649233818
-
-
R. Klinkenberg. Meta-Learning, model selection, and example selection in machine learning domains with concept drift[C]// Schadler K. ed. Annual workshop of the special interest group on machine learning, knowledge discovery, and data mining of the German Computer Science Society (Gl), Saarbrucken, Germany, 2005, 79-84.
-
R. Klinkenberg. Meta-Learning, model selection, and example selection in machine learning domains with concept drift[C]// Schadler K. ed. Annual workshop of the special interest group on machine learning, knowledge discovery, and data mining of the German Computer Science Society (Gl), Saarbrucken, Germany, 2005, 79-84.
-
-
-
-
10
-
-
77952415079
-
-
H.X. Wang, W. Fan, P. S. Yu, J.W. Han, Mining concept-drifting data streams using ensemble classifiers[C]// Furnkranz ed. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, D.C, 2003: 45-50.
-
H.X. Wang, W. Fan, P. S. Yu, J.W. Han, Mining concept-drifting data streams using ensemble classifiers[C]// Furnkranz ed. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, D.C, 2003: 45-50.
-
-
-
-
11
-
-
77952415079
-
-
H.Wang, W. Fan, P.S.Yu, J. Han. Mining concept-drifting data streams using ensemble classifiers[C]// Johannes and Grieser ed. Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, ACM Press, 2003:1002-1007.
-
H.Wang, W. Fan, P.S.Yu, J. Han. Mining concept-drifting data streams using ensemble classifiers[C]// Johannes and Grieser ed. Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, ACM Press, 2003:1002-1007.
-
-
-
-
12
-
-
22544451786
-
Learning Concept drift with a committee of decision trees [R]
-
Technical Report AI-03-302, Department of Computer Sciences, University of Texas at Austin, Austin, TX, USA
-
K.O. Stanley. Learning Concept drift with a committee of decision trees [R]. Technical Report AI-03-302, Department of Computer Sciences, University of Texas at Austin, Austin, TX, USA, 2003.
-
(2003)
-
-
Stanley, K.O.1
-
13
-
-
24644449205
-
Learning classification rules for telecom customer call data under concept drift[J]
-
M. Black, R. Hickey. Learning classification rules for telecom customer call data under concept drift[J]. Soft Computing, 2003, 8(2):102-108
-
(2003)
Soft Computing
, vol.8
, Issue.2
, pp. 102-108
-
-
Black, M.1
Hickey, R.2
-
14
-
-
26444562687
-
The problem of concept drift: Definitions and related work [R]
-
Technical Report TCD-CS-2004-15, Computer Science Department, Trinity College Dublin
-
A. Tsymbal. The problem of concept drift: Definitions and related work [R]. Technical Report TCD-CS-2004-15, Computer Science Department, Trinity College Dublin. 2004.
-
(2004)
-
-
Tsymbal, A.1
-
16
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts [J]
-
G. Widmer, M. Kubat. Learning in the presence of concept drift and hidden contexts [J]. Machine Learning, 1996, 23(1):69-101.
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
17
-
-
0032139819
-
Extracting hidden context[J]
-
Michael Harries, Claude Sammut. Extracting hidden context[J]. Machine Learning, 1998, 25(2):101-126.
-
(1998)
Machine Learning
, vol.25
, Issue.2
, pp. 101-126
-
-
Harries, M.1
Sammut, C.2
-
18
-
-
57649211086
-
-
P.D. Turney. The identication of context-sensitive features: A formal denition of context for concept learning[C]// Trinity ed. 13th International Conference on Machine Learning, Bari, Italy. 1996:43-49.
-
P.D. Turney. The identication of context-sensitive features: A formal denition of context for concept learning[C]// Trinity ed. 13th International Conference on Machine Learning, Bari, Italy. 1996:43-49.
-
-
-
-
19
-
-
57649242210
-
-
Turney. The management of context-sensitive features: a review of strategies[C]// Gunter ed. 13th International Conference on Machine Learning, Bari, Italy. 1996:56-61.
-
Turney. The management of context-sensitive features: a review of strategies[C]// Gunter ed. 13th International Conference on Machine Learning, Bari, Italy. 1996:56-61.
-
-
-
-
21
-
-
0033439536
-
Whence consumer loyalty?[J]
-
R. L. Oliver. Whence consumer loyalty?[J]. Journal of Marketing, 1999, 63(1):34-44.
-
(1999)
Journal of Marketing
, vol.63
, Issue.1
, pp. 34-44
-
-
Oliver, R.L.1
|