메뉴 건너뛰기




Volumn 112, Issue 47, 2008, Pages 12081-12089

Time-resolved studies of CN radical reactions and the role of complexes in solution

Author keywords

[No Author keywords available]

Indexed keywords

BRIDGING COMPLEXES; CL ATOMS; CN RADICALS; ELECTRONIC SPECTROSCOPIES; FS LASER PULSES; KINETIC MODELS; PRIMARY SOURCES; PRODUCT FORMATIONS; RADICAL LOSSES; REACTION PRODUCTS; SOLVENT MOLECULES; STRUCTURE CALCULATIONS; TIME-RESOLVED; TRANSIENT ABSORPTION DATUMS; WEAKLY BOUND COMPLEXES;

EID: 57449118518     PISSN: 10895639     EISSN: None     Source Type: Journal    
DOI: 10.1021/jp8064079     Document Type: Article
Times cited : (35)

References (50)
  • 5
    • 0003998388 scopus 로고    scopus 로고
    • 77 ed, Lide, D. R, Ed, CRC Press Inc, Boca Raton
    • CRC Handbook of Chemistry and Physics; 77 ed.; Lide, D. R., Ed.; CRC Press Inc.: Boca Raton, 1996.
    • (1996) CRC Handbook of Chemistry and Physics
  • 35
    • 57449108903 scopus 로고    scopus 로고
    • 2. After 4 hours of air drying, the product typical yield is typically 10-12 g (27-32%) of white, fluffy crystals.
    • 2. After 4 hours of air drying, the product typical yield is typically 10-12 g (27-32%) of white, fluffy crystals.
  • 38
    • 57449119283 scopus 로고    scopus 로고
    • In the neat solvent, there is a coherence feature that unambiguously determines the zero of time. In ICN solutions, we cannot use this feature and instead fit the signal rise to the convolution of an instantaneous rise with a Gaussian pulse. Comparing the neat solvent and the ICN solution shows that the center of the best-fit Gaussian pulse occurs 0.34 ps after the coherence feature, which establishes the zero of time for all of the measurements
    • In the neat solvent, there is a coherence feature that unambiguously determines the zero of time. In ICN solutions, we cannot use this feature and instead fit the signal rise to the convolution of an instantaneous rise with a Gaussian pulse. Comparing the neat solvent and the ICN solution shows that the center of the best-fit Gaussian pulse occurs 0.34 ps after the coherence feature, which establishes the zero of time for all of the measurements.
  • 39
    • 57449101279 scopus 로고    scopus 로고
    • Frisch, M. J. T, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery ,Jr, J. A, Vreven, T, Kudin, K. N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Bakken, V, Adamo, G, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keith, T
    • Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery ,Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, G.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, G Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, Rev. B.05; Gaussian, Inc.: Wallingford CT, 2004.
  • 40
    • 57449092252 scopus 로고    scopus 로고
    • This scheme uses two complexes, A and B. Complex A can isomerize into complex B, which reacts with the solvent to form HCN or CICN. Thus, both complexes contribute to the electronic absorption, but all of the production of HCN comes from complex B. The best fit of the data using this scheme produces an isomerization rate constant of zero
    • This scheme uses two complexes, A and B. Complex A can isomerize into complex B, which reacts with the solvent to form HCN or CICN. Thus, both complexes contribute to the electronic absorption, but all of the production of HCN comes from complex B. The best fit of the data using this scheme produces an isomerization rate constant of zero.
  • 44
    • 0003408675 scopus 로고
    • Elsevier Science Publishing Company Inc, New York
    • Rice, S. A. Diffusion-Limited Reactions; Elsevier Science Publishing Company Inc.: New York, 1985.
    • (1985) Diffusion-Limited Reactions
    • Rice, S.A.1
  • 45
    • 57449115137 scopus 로고    scopus 로고
    • The Smoluchowski expressions and the inverse proportionality between the diffusion constant and the viscosity allow us to write the recombination fraction Φ, 1- Cη-1/2 where η is the viscosity of the solvent. Using the value Φ, 0.84 from the molecular dynamics simulation of CN in CHCl3, we calculate C and use it along with the viscosity of each of the other solvents to estimate Φ for that solvent
    • 3, we calculate C and use it along with the viscosity of each of the other solvents to estimate Φ for that solvent.
  • 46
    • 57449111477 scopus 로고    scopus 로고
    • The calculation of the CN radical concentration from photolysis uses a beam diameter of 80 μm, a pulse energy of 8 μJ, a path length of 1 mm, and an ICN concentration of 0.2 M along with a cage escape fraction of 15%.
    • The calculation of the CN radical concentration from photolysis uses a beam diameter of 80 μm, a pulse energy of 8 μJ, a path length of 1 mm, and an ICN concentration of 0.2 M along with a cage escape fraction of 15%.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.