-
2
-
-
36449003534
-
-
Raftery, D.; Gooding, E.; Romanovsky, A.; Hochstrasser, R. M. J. Chem. Phys. 1994, 101, 8572.
-
(1994)
J. Chem. Phys
, vol.101
, pp. 8572
-
-
Raftery, D.1
Gooding, E.2
Romanovsky, A.3
Hochstrasser, R.M.4
-
3
-
-
0001274264
-
-
Raftery, D.; Iannone, M.; Phillips, C. M.; Hochstrasser, R. M. Chem. Phys. Lett. 1993, 201, 513.
-
(1993)
Chem. Phys. Lett
, vol.201
, pp. 513
-
-
Raftery, D.1
Iannone, M.2
Phillips, C.M.3
Hochstrasser, R.M.4
-
5
-
-
0003998388
-
-
77 ed, Lide, D. R, Ed, CRC Press Inc, Boca Raton
-
CRC Handbook of Chemistry and Physics; 77 ed.; Lide, D. R., Ed.; CRC Press Inc.: Boca Raton, 1996.
-
(1996)
CRC Handbook of Chemistry and Physics
-
-
-
6
-
-
0000468450
-
-
Morris, V. R.; Mohammad, F.; Valdry, L.; Jackson, W. M. Chem. Phys. Lett. 1994, 220, 448.
-
(1994)
Chem. Phys. Lett
, vol.220
, pp. 448
-
-
Morris, V.R.1
Mohammad, F.2
Valdry, L.3
Jackson, W.M.4
-
7
-
-
0000558938
-
-
Copeland, L. R.; Mohammad, F.; Zahedi, M.; Volman, D. H.; Jackson, W. M. J. Chem. Phys. 1992, 96, 5817.
-
(1992)
J. Chem. Phys
, vol.96
, pp. 5817
-
-
Copeland, L.R.1
Mohammad, F.2
Zahedi, M.3
Volman, D.H.4
Jackson, W.M.5
-
9
-
-
50249163172
-
-
Huang, C.; Li, W.; Estillore, A. D.; Suits, A. G. J. Chem. Phys. 2008, 129, 074301.
-
(2008)
J. Chem. Phys
, vol.129
, pp. 074301
-
-
Huang, C.1
Li, W.2
Estillore, A.D.3
Suits, A.G.4
-
10
-
-
0000861735
-
-
Alfassi, Z. B.; Huie, R. E.; Mittal, J. P.; Neta, P.; Shoute, L. C. T. J. Phys. Chem. 1993, 97, 9120.
-
(1993)
J. Phys. Chem
, vol.97
, pp. 9120
-
-
Alfassi, Z.B.1
Huie, R.E.2
Mittal, J.P.3
Neta, P.4
Shoute, L.C.T.5
-
16
-
-
10944241869
-
-
Elles, C. G.; Cox, M. J.; Barnes, G. L.; Crim, F. F. J. Phys. Chem. A 2004, 108, 10973.
-
(2004)
J. Phys. Chem. A
, vol.108
, pp. 10973
-
-
Elles, C.G.1
Cox, M.J.2
Barnes, G.L.3
Crim, F.F.4
-
19
-
-
0009517567
-
-
Yang, D. L.; Yu, T.; Wang, N. S.; Lin, M. C. Chem. Phys. 1992, 160, 307.
-
(1992)
Chem. Phys
, vol.160
, pp. 307
-
-
Yang, D.L.1
Yu, T.2
Wang, N.S.3
Lin, M.C.4
-
21
-
-
0026923202
-
-
Herbert, L.; Smith, I. W. M.; Spencer-Smith, R. D. Int. J. Chem. Kinet 1992, 24, 791.
-
(1992)
Int. J. Chem. Kinet
, vol.24
, pp. 791
-
-
Herbert, L.1
Smith, I.W.M.2
Spencer-Smith, R.D.3
-
22
-
-
33751499741
-
-
Balla, J. R.; Casleton, K. H.; Adams, J. S.; Pasternack, L. J. Phys. Chem. 1991, 95, 8694.
-
(1991)
J. Phys. Chem
, vol.95
, pp. 8694
-
-
Balla, J.R.1
Casleton, K.H.2
Adams, J.S.3
Pasternack, L.4
-
23
-
-
43949162013
-
-
Sims, I. R.; Queffelec, J.-L.; Travers, D.; Rowe, B. R.; Herbert, L.; Karthaeser, J.; Smith, I. W. M. Chem. Phys. Lett. 1993, 211, 461.
-
(1993)
Chem. Phys. Lett
, vol.211
, pp. 461
-
-
Sims, I.R.1
Queffelec, J.-L.2
Travers, D.3
Rowe, B.R.4
Herbert, L.5
Karthaeser, J.6
Smith, I.W.M.7
-
25
-
-
40849102713
-
-
Han, J. D.; Heaven, M. C.; Schnupf, U.; Alexander, M. H. J. Chem. Phys. 2008, 128, 104308.
-
(2008)
J. Chem. Phys
, vol.128
, pp. 104308
-
-
Han, J.D.1
Heaven, M.C.2
Schnupf, U.3
Alexander, M.H.4
-
27
-
-
0041649310
-
-
Kaledin, A. L.; Heaven, M. C.; Bowman, J. M. J. Chem. Phys. 1999, 110, 10380.
-
(1999)
J. Chem. Phys
, vol.110
, pp. 10380
-
-
Kaledin, A.L.1
Heaven, M.C.2
Bowman, J.M.3
-
28
-
-
0030604630
-
-
Wan, C. Z.; Gupta, M.; Zewail, A. H. Chem. Phys. Lett. 1996, 256, 279.
-
(1996)
Chem. Phys. Lett
, vol.256
, pp. 279
-
-
Wan, C.Z.1
Gupta, M.2
Zewail, A.H.3
-
31
-
-
33645464115
-
-
Moskun, A. C.; Jailaubekov, A. E.; Bradforth, S. E.; Tao, G. H.; Stratt, R. M. Science 2006, 311, 1907.
-
(2006)
Science
, vol.311
, pp. 1907
-
-
Moskun, A.C.1
Jailaubekov, A.E.2
Bradforth, S.E.3
Tao, G.H.4
Stratt, R.M.5
-
32
-
-
33645656078
-
-
Sheps, L.; Crowther, A. C.; Carrier, S. L.; Crim, F. F. J. Phys. Chem. A 2006, 110, 3087.
-
(2006)
J. Phys. Chem. A
, vol.110
, pp. 3087
-
-
Sheps, L.1
Crowther, A.C.2
Carrier, S.L.3
Crim, F.F.4
-
33
-
-
19944377205
-
-
Sheps, L.; Crowther, A. C.; Elles, C. G.; Crim, F. F. J. Phys. Chem. A 2005, 109, 4296.
-
(2005)
J. Phys. Chem. A
, vol.109
, pp. 4296
-
-
Sheps, L.1
Crowther, A.C.2
Elles, C.G.3
Crim, F.F.4
-
34
-
-
0037042115
-
-
Larsen, J.; Madsen, D.; Poulsen, J. A.; Poulsen, T. D.; Keiding, S. R.; Thogersen, J. J. Chem. Phys. 2002, 116, 7997.
-
(2002)
J. Chem. Phys
, vol.116
, pp. 7997
-
-
Larsen, J.1
Madsen, D.2
Poulsen, J.A.3
Poulsen, T.D.4
Keiding, S.R.5
Thogersen, J.6
-
35
-
-
57449108903
-
-
2. After 4 hours of air drying, the product typical yield is typically 10-12 g (27-32%) of white, fluffy crystals.
-
2. After 4 hours of air drying, the product typical yield is typically 10-12 g (27-32%) of white, fluffy crystals.
-
-
-
-
36
-
-
33646228159
-
-
Pieniazek, P. A.; Bradforth, S. E.; Krylov, A. I. J. Phys. Chem. A 2006, 110, 4854.
-
(2006)
J. Phys. Chem. A
, vol.110
, pp. 4854
-
-
Pieniazek, P.A.1
Bradforth, S.E.2
Krylov, A.I.3
-
37
-
-
33749646492
-
-
Moskun, A. C.; Bradforth, S. E.; Thogersen, J.; Keiding, S. J. Phys. Chem. A 2006, 110, 10947.
-
(2006)
J. Phys. Chem. A
, vol.110
, pp. 10947
-
-
Moskun, A.C.1
Bradforth, S.E.2
Thogersen, J.3
Keiding, S.4
-
38
-
-
57449119283
-
-
In the neat solvent, there is a coherence feature that unambiguously determines the zero of time. In ICN solutions, we cannot use this feature and instead fit the signal rise to the convolution of an instantaneous rise with a Gaussian pulse. Comparing the neat solvent and the ICN solution shows that the center of the best-fit Gaussian pulse occurs 0.34 ps after the coherence feature, which establishes the zero of time for all of the measurements
-
In the neat solvent, there is a coherence feature that unambiguously determines the zero of time. In ICN solutions, we cannot use this feature and instead fit the signal rise to the convolution of an instantaneous rise with a Gaussian pulse. Comparing the neat solvent and the ICN solution shows that the center of the best-fit Gaussian pulse occurs 0.34 ps after the coherence feature, which establishes the zero of time for all of the measurements.
-
-
-
-
39
-
-
57449101279
-
-
Frisch, M. J. T, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery ,Jr, J. A, Vreven, T, Kudin, K. N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Bakken, V, Adamo, G, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keith, T
-
Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery ,Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, G.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, G Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, Rev. B.05; Gaussian, Inc.: Wallingford CT, 2004.
-
-
-
-
40
-
-
57449092252
-
-
This scheme uses two complexes, A and B. Complex A can isomerize into complex B, which reacts with the solvent to form HCN or CICN. Thus, both complexes contribute to the electronic absorption, but all of the production of HCN comes from complex B. The best fit of the data using this scheme produces an isomerization rate constant of zero
-
This scheme uses two complexes, A and B. Complex A can isomerize into complex B, which reacts with the solvent to form HCN or CICN. Thus, both complexes contribute to the electronic absorption, but all of the production of HCN comes from complex B. The best fit of the data using this scheme produces an isomerization rate constant of zero.
-
-
-
-
42
-
-
0001806411
-
-
Arunan, E.; Manke, G.; Setser, D. W. Chem. Phys. Lett. 1993, 207, 81.
-
(1993)
Chem. Phys. Lett
, vol.207
, pp. 81
-
-
Arunan, E.1
Manke, G.2
Setser, D.W.3
-
44
-
-
0003408675
-
-
Elsevier Science Publishing Company Inc, New York
-
Rice, S. A. Diffusion-Limited Reactions; Elsevier Science Publishing Company Inc.: New York, 1985.
-
(1985)
Diffusion-Limited Reactions
-
-
Rice, S.A.1
-
45
-
-
57449115137
-
-
The Smoluchowski expressions and the inverse proportionality between the diffusion constant and the viscosity allow us to write the recombination fraction Φ, 1- Cη-1/2 where η is the viscosity of the solvent. Using the value Φ, 0.84 from the molecular dynamics simulation of CN in CHCl3, we calculate C and use it along with the viscosity of each of the other solvents to estimate Φ for that solvent
-
3, we calculate C and use it along with the viscosity of each of the other solvents to estimate Φ for that solvent.
-
-
-
-
46
-
-
57449111477
-
-
The calculation of the CN radical concentration from photolysis uses a beam diameter of 80 μm, a pulse energy of 8 μJ, a path length of 1 mm, and an ICN concentration of 0.2 M along with a cage escape fraction of 15%.
-
The calculation of the CN radical concentration from photolysis uses a beam diameter of 80 μm, a pulse energy of 8 μJ, a path length of 1 mm, and an ICN concentration of 0.2 M along with a cage escape fraction of 15%.
-
-
-
|