-
1
-
-
4243898698
-
Combining Multiple Optimization Runs with Optimal Dependency Trees
-
Technical Report CMU-CS-97-157, Carnegie Mellon University
-
S. Baluja and S. Davies. Combining Multiple Optimization Runs with Optimal Dependency Trees. Technical Report CMU-CS-97-157, Carnegie Mellon University, 1997.
-
(1997)
-
-
Baluja, S.1
Davies, S.2
-
2
-
-
78049265488
-
MIMIC: Finding optima by estimating probability densities
-
MIT Press, Cambridge
-
J. S. D. Bonet, C. L. Isbell, and P. Viola. MIMIC: Finding optima by estimating probability densities. In Advances in Neural Information Processing Systems, volume 9, pages 424-430. MIT Press, Cambridge, 1997.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 424-430
-
-
Bonet, J.S.D.1
Isbell, C.L.2
Viola, P.3
-
5
-
-
38149102431
-
EDNA: Estimation of Dependency Networks Algorithm
-
J. A. Gámez, J. L. Mateo, and J. M. Puerta. EDNA: Estimation of Dependency Networks Algorithm. In International Work-Conference on the Interplay between Natural and Artificial Computation (IWINAC'07), volume 1, pages 427-436, 2007.
-
(2007)
International Work-Conference on the Interplay between Natural and Artificial Computation (IWINAC'07)
, vol.1
, pp. 427-436
-
-
Gámez, J.A.1
Mateo, J.L.2
Puerta, J.M.3
-
6
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
-
S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:147-156, 1984.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 147-156
-
-
Geman, S.1
Geman, D.2
-
7
-
-
57349122804
-
-
D. E. Goldberg, K. Deb, and J. Horn. Massive multimodality, deception, and genetic algorithms. In Parallel Problem Solving from Nature (PPSN), 2, 1992. [8] G. Harik. Linkage learning in via probabilistic modelling in the EcGA. Technical Report 99010, Illinois Genetic Algorithms Laboratory, 1999.
-
D. E. Goldberg, K. Deb, and J. Horn. Massive multimodality, deception, and genetic algorithms. In Parallel Problem Solving from Nature (PPSN), volume 2, 1992. [8] G. Harik. Linkage learning in via probabilistic modelling in the EcGA. Technical Report 99010, Illinois Genetic Algorithms Laboratory, 1999.
-
-
-
-
10
-
-
0003846041
-
A Tutorial on Learning Bayesian Networks
-
Technical Report MSR-TR-95-06, Microsoft Research, Mar
-
D. Heckerman. A Tutorial on Learning Bayesian Networks. Technical Report MSR-TR-95-06, Microsoft Research, Mar. 1995.
-
(1995)
-
-
Heckerman, D.1
-
11
-
-
0002123103
-
Dependency networks for inference, collaborative filtering and data visualization
-
D. Heckerman, D. M. Chickering, and C. Meek. Dependency networks for inference, collaborative filtering and data visualization. Journal of Machine Learning Research, 1:49-75, 2000.
-
(2000)
Journal of Machine Learning Research
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Chickering, D.M.2
Meek, C.3
-
12
-
-
0000632751
-
Learning bayesian networks: The combination of knowledge and statistical data
-
Morgan Kaufmann Publishers
-
D. Heckerman, D. Geiger, and D. M. Chickering. Learning bayesian networks: The combination of knowledge and statistical data. In 10th Conf. Uncertainty in Artificial Intelligence, pages 293-301. Morgan Kaufmann Publishers, 1994.
-
(1994)
10th Conf. Uncertainty in Artificial Intelligence
, pp. 293-301
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
14
-
-
0035623092
-
Complex probabilistic modeling with recursive relational bayesian networks
-
M. Jaeger. Complex probabilistic modeling with recursive relational bayesian networks. Annals of Mathematics and Artificial Intelligence, 32:179 - 220, 2001.
-
(2001)
Annals of Mathematics and Artificial Intelligence
, vol.32
, pp. 179-220
-
-
Jaeger, M.1
-
15
-
-
0001300335
-
Combinatonal Optimization by Learning and Simulation of Bayesian Networks
-
P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña. Combinatonal Optimization by Learning and Simulation of Bayesian Networks. In UAI '00: Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence, pages 343-352, 2000.
-
(2000)
UAI '00: Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence
, pp. 343-352
-
-
Larrañaga, P.1
Etxeberria, R.2
Lozano, J.A.3
Peña, J.M.4
-
16
-
-
57349186606
-
-
J. L. Mateo and L. de la Ossa. LiO: an easy and flexible library of metaheuristics. Technical Report DIAB-06-04-1, Departamento de Sistemas InformÃa̧ticos, Escuela PolitAl'cnica Superior de Albacete, Universidad de Castilla-La Mancha, 2006.
-
J. L. Mateo and L. de la Ossa. LiO: an easy and flexible library of metaheuristics. Technical Report DIAB-06-04-1, Departamento de Sistemas InformÃa̧ticos, Escuela PolitAl'cnica Superior de Albacete, Universidad de Castilla-La Mancha, 2006.
-
-
-
-
17
-
-
0031215849
-
The equation for response to selection an its use for prediction
-
H. Mühlenbein. The equation for response to selection an its use for prediction. Evolutionary Computation, 5:303-346, 1998.
-
(1998)
Evolutionary Computation
, vol.5
, pp. 303-346
-
-
Mühlenbein, H.1
-
18
-
-
0345504778
-
Schemata, distributions and graphical models in evolutionary optimization
-
H. Mühlenbein, T. Mahnig, and A. Ochoa. Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics, 5:215-247, 1999.
-
(1999)
Journal of Heuristics
, vol.5
, pp. 215-247
-
-
Mühlenbein, H.1
Mahnig, T.2
Ochoa, A.3
-
21
-
-
0343773001
-
Learning bayesian network parameters from small data sets: Application of noisy-or gates
-
A. Onisko, M. J. Druzdzel, and H. Wasyluk. Learning bayesian network parameters from small data sets: Application of noisy-or gates. International Journal of Approximate Reasoning, 27(2):165-182, 2001.
-
(2001)
International Journal of Approximate Reasoning
, vol.27
, Issue.2
, pp. 165-182
-
-
Onisko, A.1
Druzdzel, M.J.2
Wasyluk, H.3
-
22
-
-
46149134436
-
Fusion, propagation and structuring in belief networks
-
J. Pearl. Fusion, propagation and structuring in belief networks. Artificial Intelligence, 29:241-288, 1986.
-
(1986)
Artificial Intelligence
, vol.29
, pp. 241-288
-
-
Pearl, J.1
-
24
-
-
0011842830
-
Escaping hierarchical traps with competent genetic algorithms
-
San Francisco, California, USA, Morgan Kaufmann
-
M. Pelikan and D. E. Goldberg. Escaping hierarchical traps with competent genetic algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 511-518, San Francisco, California, USA, 7-11 2001. Morgan Kaufmann.
-
(2001)
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001)
-
-
Pelikan, M.1
Goldberg, D.E.2
-
25
-
-
15544373328
-
Estimation of distribution algorithms with kikuchi approximations
-
R. Santana. Estimation of distribution algorithms with kikuchi approximations. Evolutionary Computation, 13(1):67-97, 2005.
-
(2005)
Evolutionary Computation
, vol.13
, Issue.1
, pp. 67-97
-
-
Santana, R.1
-
26
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):461-464, 1978.
-
(1978)
Annals of Statistics
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
27
-
-
85008060936
-
Learning Contextual Dependency Network Models for Link-Based Classification
-
Nov
-
Y. Tian, Q. Yang, T. Huang, C. X. Ling, and W. Gao. Learning Contextual Dependency Network Models for Link-Based Classification. IEEE Transactions on Knowledge and Data Engineering, 18:1482-1496, Nov 2006.
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, pp. 1482-1496
-
-
Tian, Y.1
Yang, Q.2
Huang, T.3
Ling, C.X.4
Gao, W.5
|