메뉴 건너뛰기




Volumn , Issue , 2008, Pages 407-414

Improved EDNA (Estimation of Dependency Networks Algorithm) using combining function with bivariate probability distributions

Author keywords

Combinatorial optimization; Dependency networks; Estimation of distribution algorithms; Probability combining function; Scalability

Indexed keywords

BAYESIAN NETWORKS; COMBINATORIAL OPTIMIZATION; COMPLEX NETWORKS; LEARNING ALGORITHMS; SCALABILITY;

EID: 57349199340     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1389095.1389171     Document Type: Conference Paper
Times cited : (6)

References (28)
  • 1
    • 4243898698 scopus 로고    scopus 로고
    • Combining Multiple Optimization Runs with Optimal Dependency Trees
    • Technical Report CMU-CS-97-157, Carnegie Mellon University
    • S. Baluja and S. Davies. Combining Multiple Optimization Runs with Optimal Dependency Trees. Technical Report CMU-CS-97-157, Carnegie Mellon University, 1997.
    • (1997)
    • Baluja, S.1    Davies, S.2
  • 7
    • 57349122804 scopus 로고    scopus 로고
    • D. E. Goldberg, K. Deb, and J. Horn. Massive multimodality, deception, and genetic algorithms. In Parallel Problem Solving from Nature (PPSN), 2, 1992. [8] G. Harik. Linkage learning in via probabilistic modelling in the EcGA. Technical Report 99010, Illinois Genetic Algorithms Laboratory, 1999.
    • D. E. Goldberg, K. Deb, and J. Horn. Massive multimodality, deception, and genetic algorithms. In Parallel Problem Solving from Nature (PPSN), volume 2, 1992. [8] G. Harik. Linkage learning in via probabilistic modelling in the EcGA. Technical Report 99010, Illinois Genetic Algorithms Laboratory, 1999.
  • 10
    • 0003846041 scopus 로고
    • A Tutorial on Learning Bayesian Networks
    • Technical Report MSR-TR-95-06, Microsoft Research, Mar
    • D. Heckerman. A Tutorial on Learning Bayesian Networks. Technical Report MSR-TR-95-06, Microsoft Research, Mar. 1995.
    • (1995)
    • Heckerman, D.1
  • 11
    • 0002123103 scopus 로고    scopus 로고
    • Dependency networks for inference, collaborative filtering and data visualization
    • D. Heckerman, D. M. Chickering, and C. Meek. Dependency networks for inference, collaborative filtering and data visualization. Journal of Machine Learning Research, 1:49-75, 2000.
    • (2000) Journal of Machine Learning Research , vol.1 , pp. 49-75
    • Heckerman, D.1    Chickering, D.M.2    Meek, C.3
  • 12
    • 0000632751 scopus 로고
    • Learning bayesian networks: The combination of knowledge and statistical data
    • Morgan Kaufmann Publishers
    • D. Heckerman, D. Geiger, and D. M. Chickering. Learning bayesian networks: The combination of knowledge and statistical data. In 10th Conf. Uncertainty in Artificial Intelligence, pages 293-301. Morgan Kaufmann Publishers, 1994.
    • (1994) 10th Conf. Uncertainty in Artificial Intelligence , pp. 293-301
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 14
    • 0035623092 scopus 로고    scopus 로고
    • Complex probabilistic modeling with recursive relational bayesian networks
    • M. Jaeger. Complex probabilistic modeling with recursive relational bayesian networks. Annals of Mathematics and Artificial Intelligence, 32:179 - 220, 2001.
    • (2001) Annals of Mathematics and Artificial Intelligence , vol.32 , pp. 179-220
    • Jaeger, M.1
  • 16
    • 57349186606 scopus 로고    scopus 로고
    • J. L. Mateo and L. de la Ossa. LiO: an easy and flexible library of metaheuristics. Technical Report DIAB-06-04-1, Departamento de Sistemas InformÃa̧ticos, Escuela PolitAl'cnica Superior de Albacete, Universidad de Castilla-La Mancha, 2006.
    • J. L. Mateo and L. de la Ossa. LiO: an easy and flexible library of metaheuristics. Technical Report DIAB-06-04-1, Departamento de Sistemas InformÃa̧ticos, Escuela PolitAl'cnica Superior de Albacete, Universidad de Castilla-La Mancha, 2006.
  • 17
    • 0031215849 scopus 로고    scopus 로고
    • The equation for response to selection an its use for prediction
    • H. Mühlenbein. The equation for response to selection an its use for prediction. Evolutionary Computation, 5:303-346, 1998.
    • (1998) Evolutionary Computation , vol.5 , pp. 303-346
    • Mühlenbein, H.1
  • 18
    • 0345504778 scopus 로고    scopus 로고
    • Schemata, distributions and graphical models in evolutionary optimization
    • H. Mühlenbein, T. Mahnig, and A. Ochoa. Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics, 5:215-247, 1999.
    • (1999) Journal of Heuristics , vol.5 , pp. 215-247
    • Mühlenbein, H.1    Mahnig, T.2    Ochoa, A.3
  • 21
    • 0343773001 scopus 로고    scopus 로고
    • Learning bayesian network parameters from small data sets: Application of noisy-or gates
    • A. Onisko, M. J. Druzdzel, and H. Wasyluk. Learning bayesian network parameters from small data sets: Application of noisy-or gates. International Journal of Approximate Reasoning, 27(2):165-182, 2001.
    • (2001) International Journal of Approximate Reasoning , vol.27 , Issue.2 , pp. 165-182
    • Onisko, A.1    Druzdzel, M.J.2    Wasyluk, H.3
  • 22
    • 46149134436 scopus 로고
    • Fusion, propagation and structuring in belief networks
    • J. Pearl. Fusion, propagation and structuring in belief networks. Artificial Intelligence, 29:241-288, 1986.
    • (1986) Artificial Intelligence , vol.29 , pp. 241-288
    • Pearl, J.1
  • 25
    • 15544373328 scopus 로고    scopus 로고
    • Estimation of distribution algorithms with kikuchi approximations
    • R. Santana. Estimation of distribution algorithms with kikuchi approximations. Evolutionary Computation, 13(1):67-97, 2005.
    • (2005) Evolutionary Computation , vol.13 , Issue.1 , pp. 67-97
    • Santana, R.1
  • 26
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):461-464, 1978.
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.