메뉴 건너뛰기




Volumn 30, Issue 4, 2009, Pages 1362-1370

Prediction of the flow stress of 6061 Al-15% SiC - MMC composites using adaptive network based fuzzy inference system

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; CARBON FIBER REINFORCED PLASTICS; CHROMIUM; COPPER; FORECASTING; FUZZY INFERENCE; FUZZY SYSTEMS; METALLIC MATRIX COMPOSITES; NEURAL NETWORKS; PLASTIC FLOW; SILICON; SILICON CARBIDE; STRAIN; STRAIN RATE;

EID: 57349084702     PISSN: 02613069     EISSN: 18734197     Source Type: Journal    
DOI: 10.1016/j.matdes.2008.06.022     Document Type: Article
Times cited : (35)

References (21)
  • 2
    • 0029371166 scopus 로고
    • Neural network approach to flow stress evaluation in hot deformation
    • Rao K.P., and Prasad Y.K.D.V. Neural network approach to flow stress evaluation in hot deformation. J Mater Process Technol 53 (1995) 552-566
    • (1995) J Mater Process Technol , vol.53 , pp. 552-566
    • Rao, K.P.1    Prasad, Y.K.D.V.2
  • 3
    • 0033737659 scopus 로고    scopus 로고
    • Accuracy modelling of powder metallurgy process using back propagation neural network
    • Dorndarevic D., and Relgin B. Accuracy modelling of powder metallurgy process using back propagation neural network. Powder Metall 4 1 (2000) 25-29
    • (2000) Powder Metall , vol.4 , Issue.1 , pp. 25-29
    • Dorndarevic, D.1    Relgin, B.2
  • 4
    • 0141754208 scopus 로고    scopus 로고
    • Application of neural network in generating processing map for hot working
    • Robi P.S., and Dixit U.S. Application of neural network in generating processing map for hot working. J Mater Process Technol 142 (2003) 289-294
    • (2003) J Mater Process Technol , vol.142 , pp. 289-294
    • Robi, P.S.1    Dixit, U.S.2
  • 5
    • 38849202451 scopus 로고    scopus 로고
    • Prediction of 42CrMo steel flow stress at high temperature and strain rate
    • Lin Y.C., Ming-Song C., and Jue Z. Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mech Res Commun 35 3 (2008) 142-150
    • (2008) Mech Res Commun , vol.35 , Issue.3 , pp. 142-150
    • Lin, Y.C.1    Ming-Song, C.2    Jue, Z.3
  • 6
    • 42049110588 scopus 로고    scopus 로고
    • Constitutive modeling for elevated temperature flow behavior of 42CrMo steel
    • Lin Y.C., Ming-Song C., and Jue Z. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Comput Mater Sci 42 3 (2008) 470-477
    • (2008) Comput Mater Sci , vol.42 , Issue.3 , pp. 470-477
    • Lin, Y.C.1    Ming-Song, C.2    Jue, Z.3
  • 7
    • 51249171184 scopus 로고
    • Prediction of steel flow stresses at high temperatures and strain rates
    • Laasaroui A., and Jonas J.J. Prediction of steel flow stresses at high temperatures and strain rates. Metall Trans 22A (1991) 1545-1558
    • (1991) Metall Trans , vol.22 A , pp. 1545-1558
    • Laasaroui, A.1    Jonas, J.J.2
  • 8
    • 0033338136 scopus 로고    scopus 로고
    • Estimation of hot torsion stress strain curves in iron alloys using a neural network analysis
    • Narayan V., Abad R., Lopez B., Bhadeshia H.K.D.H., and Mackay D.J.C. Estimation of hot torsion stress strain curves in iron alloys using a neural network analysis. ISIJ Int 39 10 (1999) 999-1005
    • (1999) ISIJ Int , vol.39 , Issue.10 , pp. 999-1005
    • Narayan, V.1    Abad, R.2    Lopez, B.3    Bhadeshia, H.K.D.H.4    Mackay, D.J.C.5
  • 9
    • 35348818853 scopus 로고    scopus 로고
    • Modeling microstructural evolution during dynamic recrystallization of alloy D9 using artificial neural network
    • Mandal S., Sivaprasad P.V., and Dube R.K. Modeling microstructural evolution during dynamic recrystallization of alloy D9 using artificial neural network. J Mater Eng Perform 16 6 (2007) 672-679
    • (2007) J Mater Eng Perform , vol.16 , Issue.6 , pp. 672-679
    • Mandal, S.1    Sivaprasad, P.V.2    Dube, R.K.3
  • 10
    • 52949098334 scopus 로고    scopus 로고
    • Lin YC, Jun Zhang, Jue Zhong. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comput Mater Sci; in press doi:10.1016/j.commatsci.2008.01.039.
    • Lin YC, Jun Zhang, Jue Zhong. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comput Mater Sci; in press doi:10.1016/j.commatsci.2008.01.039.
  • 11
    • 0030083845 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks for the prediction of constitutive behaviour of HSLA and carbon steels
    • Hwu J., Pan Y.T., and Lenard J.G. A comparative study of artificial neural networks for the prediction of constitutive behaviour of HSLA and carbon steels. Steel Res 67 2 (1996) 59-66
    • (1996) Steel Res , vol.67 , Issue.2 , pp. 59-66
    • Hwu, J.1    Pan, Y.T.2    Lenard, J.G.3
  • 12
    • 0033330526 scopus 로고    scopus 로고
    • The application of constitutive and artificial neural network models to predict the hot strength of steel
    • Kong X., and Hodgson P.D. The application of constitutive and artificial neural network models to predict the hot strength of steel. ISIJ Int 39 10 (1999) 991-998
    • (1999) ISIJ Int , vol.39 , Issue.10 , pp. 991-998
    • Kong, X.1    Hodgson, P.D.2
  • 13
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23 5 (1993) 665-685
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.5 , pp. 665-685
    • Jang, J.S.R.1
  • 14
    • 0035944455 scopus 로고    scopus 로고
    • Prediction of the flow stress of 0.4C-1.9Cr-1.5Mn-1.0Ni-0.2Mo steel during hot deformation
    • Wu R.H., Liu J.T., Chang H.B., Hsu T.Y., and Ruan X.Y. Prediction of the flow stress of 0.4C-1.9Cr-1.5Mn-1.0Ni-0.2Mo steel during hot deformation. J Mater Process Technol 116 (2001) 211-218
    • (2001) J Mater Process Technol , vol.116 , pp. 211-218
    • Wu, R.H.1    Liu, J.T.2    Chang, H.B.3    Hsu, T.Y.4    Ruan, X.Y.5
  • 15
    • 0001600141 scopus 로고    scopus 로고
    • On the mechanism of hot deformation
    • Sellers C.M., and Mc Tegart W.J. On the mechanism of hot deformation. Acta Metall 14 (1996) 1136-1138
    • (1996) Acta Metall , vol.14 , pp. 1136-1138
    • Sellers, C.M.1    Mc Tegart, W.J.2
  • 16
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • Hagan M.T., and Menhaj M. Training feed forward networks with the Marquardt algorithm. IEEE Trans Neural Networ 5 6 (1994) 989-993
    • (1994) IEEE Trans Neural Networ , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 17
    • 84903349859 scopus 로고    scopus 로고
    • Neural network toolbox user's guide, The Math works Inc.; 1998, Version 4.0.
    • Neural network toolbox user's guide, The Math works Inc.; 1998, Version 4.0.
  • 18
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15 1 (1985) 116-132
    • (1985) IEEE Trans Syst Man Cybern , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 19
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang J.S.R., and Sun C.T. Neuro-fuzzy modeling and control. Proc IEEE 83 3 (1995) 378-406
    • (1995) Proc IEEE , vol.83 , Issue.3 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 20
    • 0033377733 scopus 로고    scopus 로고
    • Neural fuzzy modeling of anaerobic biological wastewater treatment systems
    • Tay J.H., and Zhang X. Neural fuzzy modeling of anaerobic biological wastewater treatment systems. J Environ Eng (1999) 1149-1159
    • (1999) J Environ Eng , pp. 1149-1159
    • Tay, J.H.1    Zhang, X.2
  • 21
    • 0035303250 scopus 로고    scopus 로고
    • Fuzzy neural networks for tuning PID controllers for plant with under damped responses
    • Shen J.C. Fuzzy neural networks for tuning PID controllers for plant with under damped responses. IEEE Trans Fuzzy Syst 9 2 (2001) 333-342
    • (2001) IEEE Trans Fuzzy Syst , vol.9 , Issue.2 , pp. 333-342
    • Shen, J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.