메뉴 건너뛰기




Volumn 16, Issue 6, 2007, Pages 672-679

Modeling microstructural evolution during dynamic recrystallization of alloy D9 using artificial neural network

Author keywords

Artificial neural network; Austenitic stainless steel; Dynamic recrystallization; Grain size; Microstructural evolution

Indexed keywords

HYDRAULIC PRESSES; STATISTICAL INDICES;

EID: 35348818853     PISSN: 10599495     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11665-007-9098-z     Document Type: Article
Times cited : (31)

References (25)
  • 2
    • 0021370966 scopus 로고
    • Dynamic Recrystallization: Mechanical and Microstructural Considerations
    • 2
    • T. Sakai, J.J. Jonas 1984 Dynamic Recrystallization: Mechanical and Microstructural Considerations. Acta Metal. 32(2):89-209
    • (1984) Acta Metal. , vol.32 , pp. 89-209
    • Sakai, T.1    Jonas, J.J.2
  • 3
    • 34047114404 scopus 로고    scopus 로고
    • Kinetics, Mechanism and Modelling of Microstructural Evolution during Thermomechanical Processing of a 15Cr-15Ni-2.2Mo-Ti Modified Austenitic Stainless Steel
    • S. Mandal, P.V. Sivaprasad, R.K. Dube 2006 Kinetics, Mechanism and Modelling of Microstructural Evolution During Thermomechanical Processing of a 15Cr-15Ni-2.2Mo-Ti Modified Austenitic Stainless Steel. J. Mater. Sci. 42:2724-2734
    • (2006) J. Mater. Sci. , vol.42 , pp. 2724-2734
    • Mandal, S.1    Sivaprasad, P.V.2    Dube, R.K.3
  • 4
    • 84935612807 scopus 로고
    • Modeling Microstructural Development during Hot Rolling
    • C.M. Sellars 1990 Modeling Microstructural Development During Hot Rolling. Mater. Sci. Technol. 15:1072
    • (1990) Mater. Sci. Technol. , vol.15 , pp. 1072
    • Sellars, C.M.1
  • 5
    • 0026817291 scopus 로고
    • Physical Modeling of Materials Problem
    • M.F. Ashby 1992 Physical Modeling of Materials Problem. Mater. Sci. Technol. 8:102
    • (1992) Mater. Sci. Technol. , vol.8 , pp. 102
    • Ashby, M.F.1
  • 7
    • 0024047786 scopus 로고
    • Recovery and Recrystallization of Polycrystalline Nickel after Hot Working
    • 7
    • T. Sakai, M. Ohashi, K. Chiba, J.J. Jonas 1988 Recovery and Recrystallization of Polycrystalline Nickel After Hot Working. Acta Metal. 36(7):1781-1790
    • (1988) Acta Metal. , vol.36 , pp. 1781-1790
    • Sakai, T.1    Ohashi, M.2    Chiba, K.3    Jonas, J.J.4
  • 8
    • 23044469560 scopus 로고    scopus 로고
    • Effect of Initial Texture on the Recrystallization Texture of Cold Rolled AA 5182 Aluminum Alloy
    • 1-2
    • W.C. Liu, J.G. Morris 2005 Effect of Initial Texture on the Recrystallization Texture of Cold Rolled AA 5182 Aluminum Alloy. Mater. Sci. Eng. A 402(1-2):215-227
    • (2005) Mater. Sci. Eng. A , vol.402 , pp. 215-227
    • Liu, W.C.1    Morris, J.G.2
  • 10
    • 0032022579 scopus 로고    scopus 로고
    • A Comparison between the Back-Propagation and Counter-Propagation Networks in the Modeling of the TIG Welding Process
    • 1-3
    • S.C. Juang, Y.S. Tarang, H.R. Lii 1998 A Comparison Between the Back-Propagation and Counter-Propagation Networks in the Modeling of the TIG Welding Process. J. Mater. Process. Technol. 75(1-3):54-62
    • (1998) J. Mater. Process. Technol. , vol.75 , pp. 54-62
    • Juang, S.C.1    Tarang, Y.S.2    Lii, H.R.3
  • 11
    • 0033078679 scopus 로고    scopus 로고
    • Using Neural Networks to Predict Parameters in the Hot Working of Aluminum Alloys
    • 1-3
    • M.S. Chun, J. Biglou, J.G. Lenard, J.G. Kim 1999 Using Neural Networks to Predict Parameters in the Hot Working of Aluminum Alloys. J. Mater. Process. Technol. 86(1-3):245-251
    • (1999) J. Mater. Process. Technol. , vol.86 , pp. 245-251
    • Chun, M.S.1    Biglou, J.2    Lenard, J.G.3    Kim, J.G.4
  • 13
    • 0028466750 scopus 로고
    • Advanced supervised learning in multi-layer perceptrons - From backpropagation to adaptive learning algorithms
    • M. Riedmiller, Advanced Supervised Learning in Multi-layer Perceptrons - From Backpropagation to Adaptive Learning Algorithms, Special Issue on Neural Networks, Int. J. of Comp. Stand. Inter., 1994, 16, p 265-278
    • (1994) Special Issue on Neural Networks, Int. J. of Comp. Stand. Inter. , vol.16 , pp. 265-278
    • Riedmiller, M.1
  • 14
    • 0025593679 scopus 로고
    • SuperSAB: Fast Adaptive Back Propagation with Good Scaling Properties
    • 5
    • T. Tollenaere 1990 SuperSAB: Fast Adaptive Back Propagation with Good Scaling Properties, Neural Network 3(5):561-573
    • (1990) Neural Network , vol.3 , pp. 561-573
    • Tollenaere, T.1
  • 15
    • 51249174335 scopus 로고
    • Effect of Stacking Fault Energy on the Dynamic Recrystallization during Hot Working of FCC Metals: A Study Using Processing Maps
    • Y.V.R.K. Prasad and N. Ravichandran (1991) Effect of Stacking Fault Energy on the Dynamic Recrystallization During Hot Working of FCC Metals: A Study Using Processing Maps, Bull. Mater. Sci. 14:1241-1248
    • (1991) Bull. Mater. Sci. , vol.14 , pp. 1241-1248
    • Prasad, Y.V.R.K.1    Ravichandran, N.2
  • 16
    • 33746894601 scopus 로고    scopus 로고
    • Constitutive flow behaviour of austenitic stainless steels under hot deformation: Artificial neural network modeling to understand
    • S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Constitutive Flow Behaviour of Austenitic Stainless Steels Under Hot Deformation: Artificial Neural Network Modeling to Understand, Evaluate and Predict. Model. Simul. Mater. Sci. Eng., 2006, 14, p 1053
    • (2006) Evaluate and Predict. Model. Simul. Mater. Sci. Eng. , vol.14 , pp. 1053
    • Mandal, S.1    Sivaprasad, P.V.2    Venugopal, S.3    Murthy, K.P.N.4
  • 18
    • 0002342092 scopus 로고    scopus 로고
    • Necklace Formation during Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior
    • 1
    • D. Ponge, G. Gottstein 1998 Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior. Acta Mater. 46(1):69-80
    • (1998) Acta Mater. , vol.46 , pp. 69-80
    • Ponge, D.1    Gottstein, G.2
  • 19
    • 0032058295 scopus 로고    scopus 로고
    • Nucleation Mechanisms of Dynamic Recrystallization in Austenitic Steel Alloy 800H
    • 12
    • E. Brunger, X. Wang, G. Gottstein 1998 Nucleation Mechanisms of Dynamic Recrystallization in Austenitic Steel Alloy 800H. Scripta Mater. 38(12):1843-1849
    • (1998) Scripta Mater. , vol.38 , pp. 1843-1849
    • Brunger, E.1    Wang, X.2    Gottstein, G.3
  • 20
    • 0024880831 scopus 로고
    • Multilayer Feed Forward Networks are Universal Approximations
    • 5
    • K. Hornik, M. Stinchcombe, H. White 1989 Multilayer Feed Forward Networks are Universal Approximations. Neural Network 2(5):359-366
    • (1989) Neural Network , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 21
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the "black Box": A Randomization Approach for Understanding Variable Contributions in Artificial Neural Networks
    • 1-2
    • J.D. Olden, D.A. Jackson 2002 Illuminating the "Black Box": A Randomization Approach for Understanding Variable Contributions in Artificial Neural Networks. Ecol. Model. 154(1-2):135-150
    • (2002) Ecol. Model. , vol.154 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 22
    • 0037442845 scopus 로고    scopus 로고
    • Review and Comparison of Methods to Study the Contribution of Variables in Artificial Neural Network Models
    • 3
    • M. Gevrey, I. Dimopoulos, S. Lek 2003 Review and Comparison of Methods to Study the Contribution of Variables in Artificial Neural Network Models. Ecol. Model. 160 (3):249-264
    • (2003) Ecol. Model. , vol.160 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 23
    • 3242721368 scopus 로고    scopus 로고
    • An Accurate Comparison of Methods for Quantifying Variable Importance in Artificial Neural Networks Using Simulated Data
    • 3-4
    • J.D. Olden, M.K. Joy, R.G. Death 2004 An Accurate Comparison of Methods for Quantifying Variable Importance In Artificial Neural Networks Using Simulated Data. Ecol. Model. 178(3-4):389-397
    • (2004) Ecol. Model. , vol.178 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 24
    • 0001867238 scopus 로고
    • Interpreting Neural Network Connection Weights
    • 7
    • G.D. Garson 1991 Interpreting Neural Network Connection Weights. Artif. Intell. Expert 6(7):47-51
    • (1991) Artif. Intell. Expert , vol.6 , pp. 47-51
    • Garson, G.D.1
  • 25
    • 0029223565 scopus 로고
    • Back-Propagation Neural Networks for Modelling Complex Systems
    • A.T.C. Goh 1995 Back-Propagation Neural Networks for Modelling Complex Systems. Artif. Intell. Eng. 9:143-151
    • (1995) Artif. Intell. Eng. , vol.9 , pp. 143-151
    • Goh, A.T.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.