-
2
-
-
0003880161
-
-
Garland, New York
-
B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell (Garland, New York, 1994).
-
(1994)
Molecular Biology of the Cell
-
-
Alberts, B.1
Bray, D.2
Lewis, J.3
Raff, M.4
Roberts, K.5
Watson, J.D.6
-
3
-
-
14544273244
-
-
10.1088/0953-8984/17/6/R02
-
T. Saldit, J. Phys.: Condens. Matter 17, R287 (2005). 10.1088/0953-8984/17/6/R02
-
(2005)
J. Phys.: Condens. Matter
, vol.17
, pp. 287
-
-
Saldit, T.1
-
4
-
-
26944478236
-
-
10.1038/nature04164
-
M. Tanaka and E. Sackmann, Nature 437, 656 (2005). 10.1038/nature04164
-
(2005)
Nature
, vol.437
, pp. 656
-
-
Tanaka, M.1
Sackmann, E.2
-
6
-
-
33847060069
-
-
10.1039/b614008d
-
P. P. Girard, E. A. Cavalcanti-Adam, R. Kemkemer, and J. P. Spatz, Soft Matter 3, 307 (2007). 10.1039/b614008d
-
(2007)
Soft Matter
, vol.3
, pp. 307
-
-
Girard, P.P.1
Cavalcanti-Adam, E.A.2
Kemkemer, R.3
Spatz, J.P.4
-
10
-
-
0035334811
-
-
10.1103/PhysRevE.63.051911
-
P. S. Swain and D. Andelman, Phys. Rev. E 63, 051911 (2001). 10.1103/PhysRevE.63.051911
-
(2001)
Phys. Rev. e
, vol.63
, pp. 051911
-
-
Swain, P.S.1
Andelman, D.2
-
12
-
-
42749106177
-
-
10.1103/PhysRevLett.93.256001
-
Lawrence C.-L. Lin and F. L. H. Brown, Phys. Rev. Lett. 93, 256001 (2004). 10.1103/PhysRevLett.93.256001
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 256001
-
-
Lin -L., L.C.1
Brown, F.L.H.2
-
14
-
-
32844468225
-
-
10.1103/PhysRevE.73.010401
-
R.-J. Merath and U. Seifert, Phys. Rev. E 73, 010401 (R) (2006). 10.1103/PhysRevE.73.010401
-
(2006)
Phys. Rev. e
, vol.73
, pp. 010401
-
-
Merath, R.-J.1
Seifert, U.2
-
21
-
-
1842427394
-
-
10.1103/PhysRevE.69.011101
-
N. Gov and S. A. Safran, Phys. Rev. E 69, 011101 (2004). 10.1103/PhysRevE.69.011101
-
(2004)
Phys. Rev. e
, vol.69
, pp. 011101
-
-
Gov, N.1
Safran, S.A.2
-
26
-
-
1142298541
-
-
Strictly speaking, the fluctuations behavior of fluid membranes defers from that of random surfaces even on macroscopical length scales. Therefore, the validity of Eq. 20 cannot be rigorously justified. The good agreement of the results [Eq. 27] with the computer simulations gives credibility to this approximation. The Gaussian form becomes exact if the membrane is subjected to a strong pinning potential of localized harmonic springs, see
-
Strictly speaking, the fluctuations behavior of fluid membranes defers from that of random surfaces even on macroscopical length scales. Therefore, the validity of Eq. 20 cannot be rigorously justified. The good agreement of the results [Eq. 27] with the computer simulations gives credibility to this approximation. The Gaussian form becomes exact if the membrane is subjected to a strong pinning potential of localized harmonic springs, see L. C.-L. Lin and F. L. H. Brown, Biophys. J. 86, 764 (2004).
-
(2004)
Biophys. J.
, vol.86
, pp. 764
-
-
Lin L, C.-L.1
Brown, F.L.H.2
-
27
-
-
0037769875
-
-
10.1063/1.1578612
-
O. Farago, J. Chem. Phys. 119, 596 (2003). 10.1063/1.1578612
-
(2003)
J. Chem. Phys.
, vol.119
, pp. 596
-
-
Farago, O.1
-
30
-
-
43949084702
-
-
10.1063/1.2918736
-
O. Farago, J. Chem. Phys. 128, 184105 (2008). 10.1063/1.2918736
-
(2008)
J. Chem. Phys.
, vol.128
, pp. 184105
-
-
Farago, O.1
|