-
1
-
-
0002970176
-
1 -Formulae on Finite Structures
-
1 -Formulae on Finite Structures. Ann. Pure Appl. Logic 24: 1-48 (1983)
-
(1983)
Ann. Pure Appl. Logic
, vol.24
, pp. 1-48
-
-
Ajtai, M.1
-
2
-
-
16244379215
-
-
M. Alekhnovieh, E. Ben-Sasson, A. Razborov, A. Wigderson. Pseudorandom Generators in Propositional Proof Complexity. SIAM J. Comput. 34(1): 67-88 (2004) (preliminary version in FOCS 2000)
-
M. Alekhnovieh, E. Ben-Sasson, A. Razborov, A. Wigderson. Pseudorandom Generators in Propositional Proof Complexity. SIAM J. Comput. 34(1): 67-88 (2004) (preliminary version in FOCS 2000)
-
-
-
-
3
-
-
4544384588
-
Lower Bounds for the Polynomial Calculus: Non-Binomial Case
-
preliminary version in FOCS
-
M. Alekhnovieh, A. Razborov. Lower Bounds for the Polynomial Calculus: Non-Binomial Case. Proceedings of the Steklov Institute of Mathematics. 242: 18-35 (2003) (preliminary version in FOCS 2001)
-
(2001)
Proceedings of the Steklov Institute of Mathematics
, vol.242
, pp. 18-35
-
-
Alekhnovieh, M.1
Razborov, A.2
-
6
-
-
0005478995
-
The Complexity of Partial Derivatives
-
W. Baur, V. Strassen. The Complexity of Partial Derivatives. Theor. Comput. Sci. 22: 317-330 (1983)
-
(1983)
Theor. Comput. Sci
, vol.22
, pp. 317-330
-
-
Baur, W.1
Strassen, V.2
-
7
-
-
0020914609
-
Superconcentrators, Generalizers and Generalized Connectors with Limited Depth
-
D. Dolev, C. Dwork, N. Pippenger, A. Wigderson. Superconcentrators, Generalizers and Generalized Connectors with Limited Depth. STOC 1983: 42-51
-
(1983)
STOC
, pp. 42-51
-
-
Dolev, D.1
Dwork, C.2
Pippenger, N.3
Wigderson, A.4
-
8
-
-
0002127588
-
Parity, Circuits, and the Polynomial-Time Hierarchy
-
preliminary version in FOCS
-
M. L. Furst, J. B. Saxe, M. Sipser. Parity, Circuits, and the Polynomial-Time Hierarchy. Mathematical Systems Theory 17(1): 13-27 (1984) (preliminary version in FOCS 1981)
-
(1981)
Mathematical Systems Theory
, vol.17
, Issue.1
, pp. 13-27
-
-
Furst, M.L.1
Saxe, J.B.2
Sipser, M.3
-
9
-
-
0001567736
-
-
J. von zur Gathen. Feasible Arithmetic Computations: Valiant's Hypothesis. J. Symbolic Computation 4(2): 137-172 (1987)
-
J. von zur Gathen. Feasible Arithmetic Computations: Valiant's Hypothesis. J. Symbolic Computation 4(2): 137-172 (1987)
-
-
-
-
10
-
-
57049150424
-
-
J. von zur Gathen. Algebraic Complexity Theory. Ann. B.ev. Computer Science 3: 317-347 (1988)
-
J. von zur Gathen. Algebraic Complexity Theory. Ann. B.ev. Computer Science 3: 317-347 (1988)
-
-
-
-
11
-
-
0031639854
-
An Exponential Lower Bound for Depth 3 Arithmetic Circuits
-
D. Grigoriev, M. Karpinski. An Exponential Lower Bound for Depth 3 Arithmetic Circuits. STOC 1998: 577-582
-
(1998)
STOC
, pp. 577-582
-
-
Grigoriev, D.1
Karpinski, M.2
-
12
-
-
0033699197
-
Exponential Lower Bounds for Depth 3 Arithmetic Circuits in Algebras of Functions over Finite Fields
-
preliminary version in FOCS
-
D. Grigoriev, A. A. Razborov. Exponential Lower Bounds for Depth 3 Arithmetic Circuits in Algebras of Functions over Finite Fields. Applicable. Algebra in Engineering, Communication and Computing 10(6): 465-487 (2000) (preliminary version in FOCS 1998)
-
(1998)
Applicable. Algebra in Engineering, Communication and Computing
, vol.10
, Issue.6
, pp. 465-487
-
-
Grigoriev, D.1
Razborov, A.A.2
-
13
-
-
0002343638
-
Almost Optimal Lower Bounds for Small Depth Circuits
-
preliminary version in STOC
-
J. Hastad. Almost Optimal Lower Bounds for Small Depth Circuits, Advances in Computing Research 5: 143-170 (1989) (preliminary version in STOC 1986)
-
(1986)
Advances in Computing Research
, vol.5
, pp. 143-170
-
-
Hastad, J.1
-
14
-
-
15244352005
-
Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds
-
preliminary version in STOC
-
R. Impagliazzo, V. Kabanets. Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds. Computational Complexity 13(1-2): 1-46 (2004) (preliminary version in STOC 2003)
-
(2003)
Computational Complexity
, vol.13
, Issue.1-2
, pp. 1-46
-
-
Impagliazzo, R.1
Kabanets, V.2
-
15
-
-
57049113470
-
-
R. J. Lipton. Polynomials with 0-1 Coefficients that Are Hard to Evaluate. SIAM J. Comput. 7(1): 61-69 (1978) (preliminary version in FOCS 1975)
-
R. J. Lipton. Polynomials with 0-1 Coefficients that Are Hard to Evaluate. SIAM J. Comput. 7(1): 61-69 (1978) (preliminary version in FOCS 1975)
-
-
-
-
16
-
-
85128144888
-
Spectral Methods for Matrix Rigidity with Applications to Size-Depth Tradeoffs and Communication Complexity
-
preliminary version in FOCS
-
S.V. Lokam. Spectral Methods for Matrix Rigidity with Applications to Size-Depth Tradeoffs and Communication Complexity. Journal of Computer and System Sciences (2001) (preliminary version in FOCS 1995)
-
(1995)
Journal of Computer and System Sciences
-
-
Lokam, S.V.1
-
17
-
-
85000547940
-
Lower Bounds for Non-Commutative Computation
-
N. Nisan, Lower Bounds for Non-Commutative Computation. STOC 1991: 410-418
-
(1991)
STOC
, pp. 410-418
-
-
Nisan, N.1
-
18
-
-
0012610577
-
On the Complexity of Bilinear Forms
-
N. Nissan, A. Wigderson. On the Complexity of Bilinear Forms. STOC 1995: 723-732
-
(1995)
STOC
, pp. 723-732
-
-
Nissan, N.1
Wigderson, A.2
-
19
-
-
0001013907
-
Communication in Bounded Depth Circuits
-
P. Pudlak. Communication in Bounded Depth Circuits. Combinatorial 14(2): 203-216 (1994)
-
(1994)
Combinatorial
, vol.14
, Issue.2
, pp. 203-216
-
-
Pudlak, P.1
-
20
-
-
57049187993
-
-
P. Pudlak. A Note on Using the Detrminant for Proving Lower Bounds on the Size of Linear Circuits. Electronic Colloquium on Computational Complexity (ECCC), Report No. 42, 1998.
-
P. Pudlak. A Note on Using the Detrminant for Proving Lower Bounds on the Size of Linear Circuits. Electronic Colloquium on Computational Complexity (ECCC), Report No. 42, 1998.
-
-
-
-
21
-
-
0344153336
-
On the Complexity of Matrix Product
-
preliminary version in STOC
-
R. Raz. On the Complexity of Matrix Product. SIAMJ. Comput. 32(5) (2003) (preliminary version in STOC 2002)
-
(2002)
SIAMJ. Comput
, vol.32
, Issue.5
-
-
Raz, R.1
-
22
-
-
4544258177
-
Multi-Linear Formulas for Permanent and Determinant are of Super-Polynomial Size
-
R. Raz. Multi-Linear Formulas for Permanent and Determinant are of Super-Polynomial Size. STOC 2004: 633-641
-
(2004)
STOC
, pp. 633-641
-
-
Raz, R.1
-
23
-
-
85088177093
-
-
2)
-
2)
-
-
-
-
24
-
-
0000883554
-
Lower Bounds on the Size of Bounded-Depth Networks over a Complete Basis with Logical Addition
-
in Russian
-
A. A. Razborov. Lower Bounds on the Size of Bounded-Depth Networks over a Complete Basis with Logical Addition (in Russian). Matematicheskie Zametki, 41(4): 598-607 (1987).
-
(1987)
Matematicheskie Zametki
, vol.41
, Issue.4
, pp. 598-607
-
-
Razborov, A.A.1
-
25
-
-
26944478724
-
-
English translation in Mathematical Notes of the Academy of Sci. of the USSB. 41(4): 333-338, 1987
-
English translation in Mathematical Notes of the Academy of Sci. of the USSB. 41(4): 333-338, 1987
-
-
-
-
27
-
-
0037609044
-
-
R., Raz, A. Shpilka. Lower Bounds for Matrix Product in Bounded Depth Circuits with Arbitrary Gates. SIAM J. Comput. 32(2): 488-513 (2003) (preliminary version in STOC 2001)
-
R., Raz, A. Shpilka. Lower Bounds for Matrix Product in Bounded Depth Circuits with Arbitrary Gates. SIAM J. Comput. 32(2): 488-513 (2003) (preliminary version in STOC 2001)
-
-
-
-
28
-
-
57049153690
-
Multilinear Formulas, Maximal-Partition Discrepancy and Mixed-Sources Extractors
-
Manuscript
-
R., Raz, A. Yehudayoff. Multilinear Formulas, Maximal-Partition Discrepancy and Mixed-Sources Extractors. Manuscript, 2007.
-
(2007)
-
-
Raz, R.1
Yehudayoff, A.2
-
29
-
-
0023570259
-
Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity
-
R., Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity STOC 1987: 77-82
-
(1987)
STOC
, pp. 77-82
-
-
Smolensky, R.1
-
30
-
-
0000155802
-
Polynomials with Rational Coefficients Which Are Hard to Compute
-
V. Strassen. Polynomials with Rational Coefficients Which Are Hard to Compute. SIAM J. Comput. 3(2): 128-149 (1974)
-
(1974)
SIAM J. Comput
, vol.3
, Issue.2
, pp. 128-149
-
-
Strassen, V.1
-
31
-
-
49649143429
-
Die Berechnungskomplexität der Symbolischen Differentiation von Interpolationspolynomen.
-
V. Strassen. Die Berechnungskomplexität der Symbolischen Differentiation von Interpolationspolynomen. Theor. Comput. Sci. 1(1): 21-25 (1975)
-
(1975)
Theor. Comput. Sci
, vol.1
, Issue.1
, pp. 21-25
-
-
Strassen, V.1
-
32
-
-
0026387625
-
Lower Bounds for Polynomial Evaluation and Interpolation Problems
-
V. Shoup, R. Smolensky. Lower Bounds for Polynomial Evaluation and Interpolation Problems FOCS 1991: 378-383
-
(1991)
FOCS
, pp. 378-383
-
-
Shoup, V.1
Smolensky, R.2
-
33
-
-
0035729224
-
-
A. Shpilka, A. Wigderson. Depth-3 Arithmetic Circuits Over Fields of Characteristic Zero. Computational Complexity 10(1): 1-27 (2001) (preliminary version in Conference on Computational Complexity 1999)
-
A. Shpilka, A. Wigderson. Depth-3 Arithmetic Circuits Over Fields of Characteristic Zero. Computational Complexity 10(1): 1-27 (2001) (preliminary version in Conference on Computational Complexity 1999)
-
-
-
-
34
-
-
85034715651
-
Completeness Classes in Algebra
-
L. G. Valiant. Completeness Classes in Algebra STOC 1979: 249-261
-
(1979)
STOC
, pp. 249-261
-
-
Valiant, L.G.1
-
35
-
-
0003906310
-
Fast Parallel Computation of Polynomials Using Few Processors
-
L. G. Valiant, S. Skyum, S. Berkowitz, C. Rackoff. Fast Parallel Computation of Polynomials Using Few Processors. SIAM J. Comput. 12(4): 641-644 (1983)
-
(1983)
SIAM J. Comput
, vol.12
, Issue.4
, pp. 641-644
-
-
Valiant, L.G.1
Skyum, S.2
Berkowitz, S.3
Rackoff, C.4
-
36
-
-
0022201594
-
Separating the Polynomial-Time Hierarchy by Oracles
-
A. C. C. Yao. Separating the Polynomial-Time Hierarchy by Oracles FOCS 1985: 1-10
-
(1985)
FOCS
, pp. 1-10
-
-
Yao, A.C.C.1
|