-
1
-
-
21844440820
-
Generalization bounds for the area under the ROC curve
-
Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., Roth, D.: Generalization bounds for the area under the ROC curve. Journal of Machine Learning Research 6, 393-425 (2005)
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 393-425
-
-
Agarwal, S.1
Graepel, T.2
Herbrich, R.3
Har-Peled, S.4
Roth, D.5
-
2
-
-
0003802343
-
-
Wadsworth and Brooks
-
Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth and Brooks (1984)
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
3
-
-
26944450515
-
-
Clémençpn, S., Lugosi, G., Vayatis, N.: Ranking and scoring using empirical risk minimization. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), 3559, pp. 1-15. Springer, Heidelberg (2005)
-
Clémençpn, S., Lugosi, G., Vayatis, N.: Ranking and scoring using empirical risk minimization. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 1-15. Springer, Heidelberg (2005)
-
-
-
-
4
-
-
51049098491
-
Ranking and empirical risk minimization of U-statistics
-
Clémençpn, S., Lugosi, G., Vayatis, N.: Ranking and empirical risk minimization of U-statistics. The Annals of Statistics 36, 844-874 (2008)
-
(2008)
The Annals of Statistics
, vol.36
, pp. 844-874
-
-
Clémençpn, S.1
Lugosi, G.2
Vayatis, N.3
-
5
-
-
84897965802
-
Auc optimization vs. error rate minimization
-
Thrun, S, Saul, L, Schölkopf, B, eds, MIT Press, Cambridge
-
Cortes, C., Mohri, M.: Auc optimization vs. error rate minimization. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems 16. MIT Press, Cambridge (2004)
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
Cortes, C.1
Mohri, M.2
-
6
-
-
56749168431
-
-
Clémençon, S., Vayatis, N.: Tree-structured ranking rules and approximation of the optimal ROC curve. Technical Report hal-00268068, HAL (2008)
-
Clémençon, S., Vayatis, N.: Tree-structured ranking rules and approximation of the optimal ROC curve. Technical Report hal-00268068, HAL (2008)
-
-
-
-
7
-
-
0004019773
-
-
Springer, Heidelberg
-
Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, Heidelberg (1996)
-
(1996)
A Probabilistic Theory of Pattern Recognition
-
-
Devroye, L.1
Györfi, L.2
Lugosi, G.3
-
10
-
-
1942514832
-
Learning decision trees using the area under the roc curve
-
Morgan Kaufmann Publishers Inc, San Francisco
-
Ferri, C., Flach, P.A., Hernández-Orallo, J.: Learning decision trees using the area under the roc curve. In: ICML 2002: Proceedings of the Nineteenth International Conference on Machine Learning, pp. 139-146. Morgan Kaufmann Publishers Inc., San Francisco (2002)
-
(2002)
ICML 2002: Proceedings of the Nineteenth International Conference on Machine Learning
, pp. 139-146
-
-
Ferri, C.1
Flach, P.A.2
Hernández-Orallo, J.3
-
11
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Freund, Y., Iyer, R.D., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research 4, 933-969 (2003)
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.D.2
Schapire, R.E.3
Singer, Y.4
-
12
-
-
0003624357
-
-
Springer, Heidelberg
-
Györfi, L., Köhler, M., Krzyzak, A., Walk, H.: A Distribution-Free Theory of Nonparametric Regression. Springer, Heidelberg (2002)
-
(2002)
A Distribution-Free Theory of Nonparametric Regression
-
-
Györfi, L.1
Köhler, M.2
Krzyzak, A.3
Walk, H.4
-
13
-
-
0020083498
-
The meaning and use of the area under a ROC curve
-
Hanley, J.A., McNeil, J.: The meaning and use of the area under a ROC curve. Radiology 143, 29-36 (1982)
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, J.2
-
14
-
-
0042346121
-
Tree induction for probability-based ranking
-
Provost, F., Domingos, P.: Tree induction for probability-based ranking. Machine Learning 52(3), 199-215 (2003)
-
(2003)
Machine Learning
, vol.52
, Issue.3
, pp. 199-215
-
-
Provost, F.1
Domingos, P.2
-
16
-
-
51749117239
-
An effective tree-based algorithm for ordinal regression
-
Xia, F., Zhang, W., Wang, J.: An effective tree-based algorithm for ordinal regression. IEEE Intelligent Informatics Bulletin 7(1), 22-26 (2006)
-
(2006)
IEEE Intelligent Informatics Bulletin
, vol.7
, Issue.1
, pp. 22-26
-
-
Xia, F.1
Zhang, W.2
Wang, J.3
-
17
-
-
1942451946
-
Optimizing classifier performance via an approximation to the wilcoxon-mann-whitney statistic
-
Fawcett, T, Mishra, N, eds
-
Yan, L., Dodier, R.H., Mozer, M., Wolniewicz, R.H.: Optimizing classifier performance via an approximation to the wilcoxon-mann-whitney statistic. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003), pp. 848-855 (2003)
-
(2003)
Proceedings of the Twentieth International Conference on Machine Learning (ICML
, pp. 848-855
-
-
Yan, L.1
Dodier, R.H.2
Mozer, M.3
Wolniewicz, R.H.4
|