메뉴 건너뛰기




Volumn 71, Issue 16-18, 2008, Pages 3421-3433

Fully complex-valued radial basis function networks: Orthogonal least squares regression and classification

Author keywords

Classification; Complex valued radial basis function network; D optimality experimental design; Fisher ratio of class separability measure; Orthogonal least squares algorithm; Regression

Indexed keywords

ALGORITHMS; ATTITUDE CONTROL; COMMUNICATION; COMMUNICATION SYSTEMS; CURVE FITTING; FEEDFORWARD NEURAL NETWORKS; IMAGE SEGMENTATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; LEAST SQUARES APPROXIMATIONS; MODULATION; NEURAL NETWORKS; PROBABILITY DENSITY FUNCTION; REGRESSION ANALYSIS; STATISTICS;

EID: 56549097411     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.12.003     Document Type: Conference Paper
Times cited : (25)

References (32)
  • 4
    • 0029205963 scopus 로고
    • Channel equalization using adaptive complex radial basis function networks
    • I. Cha, and S.A. Kassam Channel equalization using adaptive complex radial basis function networks IEEE J. Sel. Areas Commun. 131 1 1995 122 131
    • (1995) IEEE J. Sel. Areas Commun. , vol.131 , Issue.1 , pp. 122-131
    • Cha, I.1    Kassam, S.A.2
  • 5
    • 84949203556 scopus 로고    scopus 로고
    • Locally regularised orthogonal least squares algorithm for the construction of sparse kernel regression models
    • Beijing, China, August 26-30
    • S. Chen, Locally regularised orthogonal least squares algorithm for the construction of sparse kernel regression models, in: Proceedings of the 6th International Conference on Signal Processing, vol. 2, Beijing, China, August 26-30, 2002, pp. 1229-1232.
    • (2002) Proceedings of the 6th International Conference on Signal Processing , vol.2 , pp. 1229-1232
    • Chen, S.1
  • 6
    • 29444447147 scopus 로고    scopus 로고
    • Local regularization assisted orthogonal least squares regression
    • S. Chen Local regularization assisted orthogonal least squares regression Neurocomputing 69 4-6 2006 559 585
    • (2006) Neurocomputing , vol.69 , Issue.4-6 , pp. 559-585
    • Chen, S.1
  • 8
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • S. Chen, S.A. Billings, and W. Luo Orthogonal least squares methods and their application to non-linear system identification Int. J. Control 50 5 1989 1873 1896
    • (1989) Int. J. Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 9
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S. Chen, C.F.N. Cowan, and P.M. Grant Orthogonal least squares learning algorithm for radial basis function networks IEEE Trans. Neural Networks 2 2 1991 302 309
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 10
    • 27144493228 scopus 로고    scopus 로고
    • Adaptive minimum bit error rate beamforming assisted receiver for QPSK wireless communication
    • S. Chen, L. Hanzo, N.N. Ahmad, and A. Wolfgang Adaptive minimum bit error rate beamforming assisted receiver for QPSK wireless communication Digital Signal Process. 15 6 2005 545 567
    • (2005) Digital Signal Process. , vol.15 , Issue.6 , pp. 545-567
    • Chen, S.1    Hanzo, L.2    Ahmad, N.N.3    Wolfgang, A.4
  • 11
    • 51249101037 scopus 로고    scopus 로고
    • Nonlinear beamforming for multiple-antenna assisted QPSK wireless systems
    • to be presented at Beijing, China, May 19-23
    • S. Chen, L. Hanzo, S. Tan, Nonlinear beamforming for multiple-antenna assisted QPSK wireless systems, to be presented at ICC 2008, Beijing, China, May 19-23, 2008.
    • (2008) ICC 2008
    • Chen, S.1    Hanzo, L.2    Tan, S.3
  • 12
    • 2442537010 scopus 로고    scopus 로고
    • Kernel-based nonlinear beamforming construction using orthogonal forward selection with Fisher ratio class separability measure
    • S. Chen, L. Hanzo, and A. Wolfgang Kernel-based nonlinear beamforming construction using orthogonal forward selection with Fisher ratio class separability measure IEEE Signal Process. Lett. 11 5 2004 478 481
    • (2004) IEEE Signal Process. Lett. , vol.11 , Issue.5 , pp. 478-481
    • Chen, S.1    Hanzo, L.2    Wolfgang, A.3
  • 13
    • 0038548172 scopus 로고    scopus 로고
    • Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design
    • S. Chen, X. Hong, and C.J. Harris Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design IEEE Trans. Autom. Control 48 6 2003 1029 1036
    • (2003) IEEE Trans. Autom. Control , vol.48 , Issue.6 , pp. 1029-1036
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 14
    • 0028277017 scopus 로고
    • Complex-valued radial basis function network, part I: Network architecture and learning algorithms
    • S. Chen, S. McLaughlin, and B. Mulgrew Complex-valued radial basis function network, part I: network architecture and learning algorithms Signal Process. 35 1994 19 31
    • (1994) Signal Process. , vol.35 , pp. 19-31
    • Chen, S.1    McLaughlin, S.2    Mulgrew, B.3
  • 15
    • 0028392986 scopus 로고
    • Complex-valued radial basis function network, part II: Application to digital communications channel equalisation
    • S. Chen, S. McLaughlin, and B. Mulgrew Complex-valued radial basis function network, part II: application to digital communications channel equalisation Signal Process. 36 1994 175 188
    • (1994) Signal Process. , vol.36 , pp. 175-188
    • Chen, S.1    McLaughlin, S.2    Mulgrew, B.3
  • 16
    • 0029343956 scopus 로고
    • Fast orthogonal least squares algorithm for efficient subset model selection
    • S. Chen, and J. Wigger Fast orthogonal least squares algorithm for efficient subset model selection IEEE Trans. Signal Process. 43 7 1995 1713 1715
    • (1995) IEEE Trans. Signal Process. , vol.43 , Issue.7 , pp. 1713-1715
    • Chen, S.1    Wigger, J.2
  • 17
    • 0036565527 scopus 로고    scopus 로고
    • Communication channel equalization using complex-valued minimal radial basis function neural networks
    • J. Deng, N. Sundararajan, and P. Saratchandran Communication channel equalization using complex-valued minimal radial basis function neural networks IEEE Trans. Neural Networks 13 3 2002 687 696
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.3 , pp. 687-696
    • Deng, J.1    Sundararajan, N.2    Saratchandran, P.3
  • 19
    • 0032634867 scopus 로고    scopus 로고
    • A complex valued radial basis function network for equalization of fast time varying channels
    • Q. Gan, P. Saratchandran, N. Sundararajan, and K.R. Subramanian A complex valued radial basis function network for equalization of fast time varying channels IEEE Trans. Neural Networks 10 4 1999 958 960
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.4 , pp. 958-960
    • Gan, Q.1    Saratchandran, P.2    Sundararajan, N.3    Subramanian, K.R.4
  • 21
    • 0036738761 scopus 로고    scopus 로고
    • Nonlinear model structure design and construction using orthogonal least squares and D-optimality design
    • X. Hong, and C.J. Harris Nonlinear model structure design and construction using orthogonal least squares and D-optimality design IEEE Trans. Neural Networks 13 5 2002 1245 1250
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.5 , pp. 1245-1250
    • Hong, X.1    Harris, C.J.2
  • 22
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • to appear.
    • G.-B. Huang, L. Chen, Enhanced random search based incremental extreme learning machine, Neurocomputing (2008) to appear.
    • (2008) Neurocomputing
    • Huang, G.-B.1    Chen, L.2
  • 24
    • 0038159963 scopus 로고    scopus 로고
    • Approximation by fully complex multilayer perceptrons
    • T. Lim, and T. Adali Approximation by fully complex multilayer perceptrons Neural Comput. 15 7 2003 1641 1666
    • (2003) Neural Comput. , vol.15 , Issue.7 , pp. 1641-1666
    • Lim, T.1    Adali, T.2
  • 26
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D.J.C. MacKay Bayesian interpolation Neural Comput. 4 3 1992 415 447
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 27
    • 0036740269 scopus 로고    scopus 로고
    • RBF neural network center selection based on Fisher ratio class separability measure
    • K.Z. Mao RBF neural network center selection based on Fisher ratio class separability measure IEEE Trans. Neural Networks 13 5 2002 1211 1217
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.5 , pp. 1211-1217
    • Mao, K.Z.1
  • 29
    • 0023329970 scopus 로고
    • Performance analysis of digital radio links with nonlinear transmit amplifier
    • S. Pupolin, and L.J. Greenstein Performance analysis of digital radio links with nonlinear transmit amplifier IEEE J. Sel. Areas Commun. SAC-5 3 1987 534 546
    • (1987) IEEE J. Sel. Areas Commun. , vol.SAC-5 , Issue.3 , pp. 534-546
    • Pupolin, S.1    Greenstein, L.J.2
  • 31
    • 0033080294 scopus 로고    scopus 로고
    • Complex-valued neural networks with adaptive spline activation function for digital ratio links nonlinear equalization
    • A. Uncini, L. Vecci, P. Campolucci, and F. Piazza Complex-valued neural networks with adaptive spline activation function for digital ratio links nonlinear equalization IEEE Trans. Signal Process. 47 2 1999 505 514
    • (1999) IEEE Trans. Signal Process. , vol.47 , Issue.2 , pp. 505-514
    • Uncini, A.1    Vecci, L.2    Campolucci, P.3    Piazza, F.4
  • 32
    • 19344378517 scopus 로고    scopus 로고
    • Landmine detection and classification with complex-valued hybrid neural network using scattering parameters dataset
    • C.-C. Yang, and N.K. Bose Landmine detection and classification with complex-valued hybrid neural network using scattering parameters dataset IEEE Trans. Neural Networks 16 3 2005 743 753
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.3 , pp. 743-753
    • Yang, C.-C.1    Bose, N.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.