메뉴 건너뛰기




Volumn 57, Issue 3, 2004, Pages 271-304

Integrating guidance into relational reinforcement learning

Author keywords

Guided exploration; Reinforcement learning; Relational learning

Indexed keywords

DECISION TREES; GUIDED EXPLORATIONS; RELATIONAL REINFORCEMENT LEARNING (RRL); STRUCTURAL DOMAINS;

EID: 4444312102     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:MACH.0000039779.47329.3a     Document Type: Conference Paper
Times cited : (79)

References (45)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6:1, 37-66.
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 2
    • 1942450674 scopus 로고
    • A framework for behavioral cloning
    • S. Muggleton, K. Furukawa, & D. Michie (Eds.). Oxford University Press
    • Bain, M., & Sammut, C. (1995). A framework for behavioral cloning. In S. Muggleton, K. Furukawa, & D. Michie (Eds.), Machine Intelligence, vol. 15. Oxford University Press.
    • (1995) Machine Intelligence , vol.15
    • Bain, M.1    Sammut, C.2
  • 4
    • 0032069371 scopus 로고    scopus 로고
    • Top-down induction of first order logical decision trees
    • Blockeel, H., & De Raedt, L. (1998). Top-down induction of first order logical decision trees. Artificial Intelligence, 101:1/2, 285-297.
    • (1998) Artificial Intelligence , vol.101 , Issue.1-2 , pp. 285-297
    • Blockeel, H.1    De Raedt, L.2
  • 8
    • 0031198976 scopus 로고    scopus 로고
    • Logical settings for concept learning
    • De Raedt, L. (1997). Logical settings for concept learning. Artificial Intelligence, 95, 187-201.
    • (1997) Artificial Intelligence , vol.95 , pp. 187-201
    • De Raedt, L.1
  • 9
    • 0028529173 scopus 로고
    • First order j k-clausal theories are PAC-learaable
    • De Raedt, L., & Džeroski, S. (1994). First order j k-clausal theories are PAC-learaable. Artificial Intelligence, 70, 375-392.
    • (1994) Artificial Intelligence , vol.70 , pp. 375-392
    • De Raedt, L.1    Džeroski, S.2
  • 10
    • 0003979861 scopus 로고    scopus 로고
    • Incorporating prior knowledge and previously learned information into reinforcement learning agents
    • Institute for Complex Engineered Systems, Carnegie Mellon University
    • Dixon, K., Malak, R., & Khosla, P. (2000). Incorporating prior knowledge and previously learned information into reinforcement learning agents. Technical report, Institute for Complex Engineered Systems, Carnegie Mellon University.
    • (2000) Technical Report
    • Dixon, K.1    Malak, R.2    Khosla, P.3
  • 11
    • 4444267543 scopus 로고    scopus 로고
    • Learing digger using hierarchical reinforcement learning for concurrent goals
    • Onderwijsinstituut CKI, University of Utrecht
    • Driessens, K., & Blockeel, H. (2001). Learing digger using hierarchical reinforcement learning for concurrent goals. In Proceedings of the 5th European Workshop on Reinforcement Learning (pp. 11-12). Onderwijsinstituut CKI, University of Utrecht.
    • (2001) Proceedings of the 5th European Workshop on Reinforcement Learning , pp. 11-12
    • Driessens, K.1    Blockeel, H.2
  • 12
    • 1942421161 scopus 로고    scopus 로고
    • Relational instance based regression for relational reinforcement learning
    • Submitted to
    • Driessens, K., & Ramon, J. (2003). Relational instance based regression for relational reinforcement learning. In Submitted to ICML 2003.
    • (2003) ICML 2003
    • Driessens, K.1    Ramon, J.2
  • 13
    • 84948172455 scopus 로고    scopus 로고
    • Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner
    • Springer-Verlag
    • Driessens, K., Ramon, J., & Blockeel, H. (2001). Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner. In Proceedings of the 13th European Conference on Machine Learning (pp. 97-108). Springer-Verlag.
    • (2001) Proceedings of the 13th European Conference on Machine Learning , pp. 97-108
    • Driessens, K.1    Ramon, J.2    Blockeel, H.3
  • 21
    • 4444283088 scopus 로고    scopus 로고
    • Distance based approaches to relational learning and clustering
    • S. Džeroski and N. Lavrač (Eds.). Springer-Verlag
    • Kirsten, M., Wrobel, S., & Horvath, T. (2001). Distance based approaches to relational learning and clustering. In S. Džeroski and N. Lavrač (Eds.), Relational data mining (pp. 213-232). Springer-Verlag.
    • (2001) Relational Data Mining , pp. 213-232
    • Kirsten, M.1    Wrobel, S.2    Horvath, T.3
  • 25
    • 0000123778 scopus 로고
    • Self-improving reactive agents based on reinforcement learning, planning and teaching
    • Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 8, 293-321.
    • (1992) Machine Learning , vol.8 , pp. 293-321
    • Lin, L.-J.1
  • 27
    • 0028429573 scopus 로고
    • Inductive logic programming: Theory and methods
    • Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. Journal of Logic Programming, 19/20, 629-679.
    • (1994) Journal of Logic Programming , vol.19-20 , pp. 629-679
    • Muggleton, S.1    De Raedt, L.2
  • 28
    • 0003500248 scopus 로고
    • Morgan Kaufmann series in machine learning Morgan Kaufmann
    • Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann series in machine learning. Morgan Kaufmann.
    • (1993) C4.5: Programs for Machine Learning
    • Quinlan, J.R.1
  • 30
    • 0035402326 scopus 로고    scopus 로고
    • A polynomial time computable metric between point sets
    • Ramon, J., & Bruynooghe, M. (2001). A polynomial time computable metric between point sets. Acta Informatica, 37, 765-780.
    • (2001) Acta Informatica , vol.37 , pp. 765-780
    • Ramon, J.1    Bruynooghe, M.2
  • 35
    • 85156221438 scopus 로고    scopus 로고
    • Generalization in reinforcement learning: Successful examples using sparse coarse coding
    • Cambridge, MA: The MIT Press
    • Sutton, R. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse coding. In Proceeding of the 8th Conference on Advances in Neural Information Processing Systems (pp. 1038-1044). Cambridge, MA: The MIT Press.
    • (1996) Proceeding of the 8th Conference on Advances in Neural Information Processing Systems , pp. 1038-1044
    • Sutton, R.1
  • 38
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • Utgoff, P., Berkman, N., & Clouse, J. (1997). Decision tree induction based on efficient tree restructuring. Machine Learning, 29:1, 5-44.
    • (1997) Machine Learning , vol.29 , Issue.1 , pp. 5-44
    • Utgoff, P.1    Berkman, N.2    Clouse, J.3
  • 39
    • 4444306027 scopus 로고    scopus 로고
    • How to upgrade propositional learners to first order logic: A case study
    • S. Džeroski, & N. Lavrač (Eds.). Springer-Verlag
    • Van Laer, W., & De Raedt, L. (2001 ). How to upgrade propositional learners to first order logic: A case study. In S. Džeroski, & N. Lavrač (Eds.), Relational Data Mining (pp. 235-261). Springer-Verlag.
    • (2001) Relational Data Mining , pp. 235-261
    • Van Laer, W.1    De Raedt, L.2
  • 41
    • 0015960104 scopus 로고
    • The string to string correction problem
    • Wagner, R., & Fischer, M. (1974). The string to string correction problem. Journal of the ACM, 21(1), 168-173.
    • (1974) Journal of the ACM , vol.21 , Issue.1 , pp. 168-173
    • Wagner, R.1    Fischer, M.2
  • 42
    • 84969334117 scopus 로고
    • Learning by observation and practice: An incremental approach for planning operator acquisition
    • Wang, X. (1995). Learning by observation and practice: An incremental approach for planning operator acquisition. In Proceedings of the 12th International Conference on Machine Learning (pp. 549-557).
    • (1995) Proceedings of the 12th International Conference on Machine Learning , pp. 549-557
    • Wang, X.1
  • 45


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.