-
1
-
-
0025725905
-
Instance-based learning algorithms
-
Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6:1, 37-66.
-
(1991)
Machine Learning
, vol.6
, Issue.1
, pp. 37-66
-
-
Aha, D.W.1
Kibler, D.2
Albert, M.K.3
-
2
-
-
1942450674
-
A framework for behavioral cloning
-
S. Muggleton, K. Furukawa, & D. Michie (Eds.). Oxford University Press
-
Bain, M., & Sammut, C. (1995). A framework for behavioral cloning. In S. Muggleton, K. Furukawa, & D. Michie (Eds.), Machine Intelligence, vol. 15. Oxford University Press.
-
(1995)
Machine Intelligence
, vol.15
-
-
Bain, M.1
Sammut, C.2
-
4
-
-
0032069371
-
Top-down induction of first order logical decision trees
-
Blockeel, H., & De Raedt, L. (1998). Top-down induction of first order logical decision trees. Artificial Intelligence, 101:1/2, 285-297.
-
(1998)
Artificial Intelligence
, vol.101
, Issue.1-2
, pp. 285-297
-
-
Blockeel, H.1
De Raedt, L.2
-
5
-
-
0003802343
-
-
Belmont: Wadsworth
-
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Belmont: Wadsworth.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
8
-
-
0031198976
-
Logical settings for concept learning
-
De Raedt, L. (1997). Logical settings for concept learning. Artificial Intelligence, 95, 187-201.
-
(1997)
Artificial Intelligence
, vol.95
, pp. 187-201
-
-
De Raedt, L.1
-
9
-
-
0028529173
-
First order j k-clausal theories are PAC-learaable
-
De Raedt, L., & Džeroski, S. (1994). First order j k-clausal theories are PAC-learaable. Artificial Intelligence, 70, 375-392.
-
(1994)
Artificial Intelligence
, vol.70
, pp. 375-392
-
-
De Raedt, L.1
Džeroski, S.2
-
10
-
-
0003979861
-
Incorporating prior knowledge and previously learned information into reinforcement learning agents
-
Institute for Complex Engineered Systems, Carnegie Mellon University
-
Dixon, K., Malak, R., & Khosla, P. (2000). Incorporating prior knowledge and previously learned information into reinforcement learning agents. Technical report, Institute for Complex Engineered Systems, Carnegie Mellon University.
-
(2000)
Technical Report
-
-
Dixon, K.1
Malak, R.2
Khosla, P.3
-
11
-
-
4444267543
-
Learing digger using hierarchical reinforcement learning for concurrent goals
-
Onderwijsinstituut CKI, University of Utrecht
-
Driessens, K., & Blockeel, H. (2001). Learing digger using hierarchical reinforcement learning for concurrent goals. In Proceedings of the 5th European Workshop on Reinforcement Learning (pp. 11-12). Onderwijsinstituut CKI, University of Utrecht.
-
(2001)
Proceedings of the 5th European Workshop on Reinforcement Learning
, pp. 11-12
-
-
Driessens, K.1
Blockeel, H.2
-
12
-
-
1942421161
-
Relational instance based regression for relational reinforcement learning
-
Submitted to
-
Driessens, K., & Ramon, J. (2003). Relational instance based regression for relational reinforcement learning. In Submitted to ICML 2003.
-
(2003)
ICML 2003
-
-
Driessens, K.1
Ramon, J.2
-
13
-
-
84948172455
-
Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner
-
Springer-Verlag
-
Driessens, K., Ramon, J., & Blockeel, H. (2001). Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner. In Proceedings of the 13th European Conference on Machine Learning (pp. 97-108). Springer-Verlag.
-
(2001)
Proceedings of the 13th European Conference on Machine Learning
, pp. 97-108
-
-
Driessens, K.1
Ramon, J.2
Blockeel, H.3
-
14
-
-
0242445843
-
Relational reinforcement learning
-
J. Shavlik (Ed.). Morgan Kaufmann
-
Džeroski, S., De Raedt, L., & Blockeel, H. (1998). Relational reinforcement learning. In J. Shavlik (Ed.), Proceedings of the 15th International Conference on Machine Learning (ICML'98) (pp. 136-143). Morgan Kaufmann.
-
(1998)
Proceedings of the 15th International Conference on Machine Learning (ICML'98)
, pp. 136-143
-
-
Džeroski, S.1
De Raedt, L.2
Blockeel, H.3
-
15
-
-
0035312760
-
Relational reinforcement learning
-
Džeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning. Machine Learning, 43, 7-52.
-
(2001)
Machine Learning
, vol.43
, pp. 7-52
-
-
Džeroski, S.1
De Raedt, L.2
Driessens, K.3
-
17
-
-
58349113822
-
Approximate policy iteration with a policy language bias
-
T. S., L. Saul, & B. Bernhard Schikopf (Eds.). The MIT Press
-
Fern, A., Yoon, S., & Givan, R. (2003). Approximate policy iteration with a policy language bias. In T. S., L. Saul, & B. Bernhard Schikopf (Eds.), Proceedings of the Seventeenth Annual Conference on Neural Information Processing Systems. The MIT Press.
-
(2003)
Proceedings of the Seventeenth Annual Conference on Neural Information Processing Systems
-
-
Fern, A.1
Yoon, S.2
Givan, R.3
-
19
-
-
0029679044
-
Reinforcement learning: A survey
-
Kaelbling, L., Littman, M., & Moore, A. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237-285.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 237-285
-
-
Kaelbling, L.1
Littman, M.2
Moore, A.3
-
21
-
-
4444283088
-
Distance based approaches to relational learning and clustering
-
S. Džeroski and N. Lavrač (Eds.). Springer-Verlag
-
Kirsten, M., Wrobel, S., & Horvath, T. (2001). Distance based approaches to relational learning and clustering. In S. Džeroski and N. Lavrač (Eds.), Relational data mining (pp. 213-232). Springer-Verlag.
-
(2001)
Relational Data Mining
, pp. 213-232
-
-
Kirsten, M.1
Wrobel, S.2
Horvath, T.3
-
23
-
-
35048819671
-
Least-squares methods in reinforcement learning for control
-
Springer
-
Lagoudakis, M., Parr, R., & Littman, M. (2002). Least-squares methods in reinforcement learning for control. In Proceedings of the 2nd Hellenic Conference on Artificial Intelligence (SETN-02) (pp. 249-260), Springer.
-
(2002)
Proceedings of the 2nd Hellenic Conference on Artificial Intelligence (SETN-02)
, pp. 249-260
-
-
Lagoudakis, M.1
Parr, R.2
Littman, M.3
-
25
-
-
0000123778
-
Self-improving reactive agents based on reinforcement learning, planning and teaching
-
Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 8, 293-321.
-
(1992)
Machine Learning
, vol.8
, pp. 293-321
-
-
Lin, L.-J.1
-
27
-
-
0028429573
-
Inductive logic programming: Theory and methods
-
Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. Journal of Logic Programming, 19/20, 629-679.
-
(1994)
Journal of Logic Programming
, vol.19-20
, pp. 629-679
-
-
Muggleton, S.1
De Raedt, L.2
-
28
-
-
0003500248
-
-
Morgan Kaufmann series in machine learning Morgan Kaufmann
-
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann series in machine learning. Morgan Kaufmann.
-
(1993)
C4.5: Programs for Machine Learning
-
-
Quinlan, J.R.1
-
30
-
-
0035402326
-
A polynomial time computable metric between point sets
-
Ramon, J., & Bruynooghe, M. (2001). A polynomial time computable metric between point sets. Acta Informatica, 37, 765-780.
-
(2001)
Acta Informatica
, vol.37
, pp. 765-780
-
-
Ramon, J.1
Bruynooghe, M.2
-
35
-
-
85156221438
-
Generalization in reinforcement learning: Successful examples using sparse coarse coding
-
Cambridge, MA: The MIT Press
-
Sutton, R. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse coding. In Proceeding of the 8th Conference on Advances in Neural Information Processing Systems (pp. 1038-1044). Cambridge, MA: The MIT Press.
-
(1996)
Proceeding of the 8th Conference on Advances in Neural Information Processing Systems
, pp. 1038-1044
-
-
Sutton, R.1
-
37
-
-
4444285247
-
Learning models of control skills: Phenomena, results and problems
-
IFAC
-
Urbancic, T., Bratko, I., & Sammut, C. (1996). Learning models of control skills: Phenomena, results and problems. In Proceedings of the 13th Triennial World Congress of the International Federation of Automatic Control (pp. 391-396). IFAC.
-
(1996)
Proceedings of the 13th Triennial World Congress of the International Federation of Automatic Control
, pp. 391-396
-
-
Urbancic, T.1
Bratko, I.2
Sammut, C.3
-
38
-
-
0031246271
-
Decision tree induction based on efficient tree restructuring
-
Utgoff, P., Berkman, N., & Clouse, J. (1997). Decision tree induction based on efficient tree restructuring. Machine Learning, 29:1, 5-44.
-
(1997)
Machine Learning
, vol.29
, Issue.1
, pp. 5-44
-
-
Utgoff, P.1
Berkman, N.2
Clouse, J.3
-
39
-
-
4444306027
-
How to upgrade propositional learners to first order logic: A case study
-
S. Džeroski, & N. Lavrač (Eds.). Springer-Verlag
-
Van Laer, W., & De Raedt, L. (2001 ). How to upgrade propositional learners to first order logic: A case study. In S. Džeroski, & N. Lavrač (Eds.), Relational Data Mining (pp. 235-261). Springer-Verlag.
-
(2001)
Relational Data Mining
, pp. 235-261
-
-
Van Laer, W.1
De Raedt, L.2
-
41
-
-
0015960104
-
The string to string correction problem
-
Wagner, R., & Fischer, M. (1974). The string to string correction problem. Journal of the ACM, 21(1), 168-173.
-
(1974)
Journal of the ACM
, vol.21
, Issue.1
, pp. 168-173
-
-
Wagner, R.1
Fischer, M.2
-
42
-
-
84969334117
-
Learning by observation and practice: An incremental approach for planning operator acquisition
-
Wang, X. (1995). Learning by observation and practice: An incremental approach for planning operator acquisition. In Proceedings of the 12th International Conference on Machine Learning (pp. 549-557).
-
(1995)
Proceedings of the 12th International Conference on Machine Learning
, pp. 549-557
-
-
Wang, X.1
|