메뉴 건너뛰기




Volumn 30, Issue 2, 2005, Pages 119-132

Entity identification for heterogeneous database integration - A multiple classifier system approach and empirical evaluation

Author keywords

Entity identification; Heterogeneous database integration; Multiple classifier system

Indexed keywords

DATA ACQUISITION; DATA WAREHOUSES; INTERNET; LEARNING SYSTEMS; MERGERS AND ACQUISITIONS; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 5644287747     PISSN: 03064379     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.is.2003.11.001     Document Type: Article
Times cited : (40)

References (28)
  • 1
    • 85014902143 scopus 로고    scopus 로고
    • Mining entity-identification rules for database integration
    • M. Ganesh, J. Srivastava, T. Richardson, Mining entity-identification rules for database integration, in: Proceedings of the KDD, 1996, pp. 291-294.
    • (1996) Proceedings of the KDD , pp. 291-294
    • Ganesh, M.1    Srivastava, J.2    Richardson, T.3
  • 2
    • 0034228352 scopus 로고    scopus 로고
    • Automating the approximate record-matching process
    • Verykios V.S., Elmagarmid A.K., Houstis E.N. Automating the approximate record-matching process. Inf. Sci. 126(1-4):2000;83-98.
    • (2000) Inf. Sci. , vol.126 , Issue.1-4 , pp. 83-98
    • Verykios, V.S.1    Elmagarmid, A.K.2    Houstis, E.N.3
  • 3
    • 0013331361 scopus 로고    scopus 로고
    • Real-world data is dirty: Data cleansing and the merge/purge problem
    • Hernández M.A., Stolfo S.J. Real-world data is dirty. data cleansing and the merge/purge problem Data Min. Knowledge Discovery. 2(1):1998;9-37.
    • (1998) Data Min. Knowledge Discovery , vol.2 , Issue.1 , pp. 9-37
    • Hernández, M.A.1    Stolfo, S.J.2
  • 4
    • 84947399464 scopus 로고
    • Atheory of record linkage
    • Fellegi I.P., Sunter A.B. Atheory of record linkage. JASA. 64(328):1969;1183-1210.
    • (1969) JASA , vol.64 , Issue.328 , pp. 1183-1210
    • Fellegi, I.P.1    Sunter, A.B.2
  • 6
    • 85166310944 scopus 로고    scopus 로고
    • Methods for linking and mining massive heterogeneous databases
    • J.C. Pinheiro, D.X. Sun, Methods for linking and mining massive heterogeneous databases, in: Proceedings of the KDD, 1998, pp. 309-313.
    • (1998) Proceedings of the KDD , pp. 309-313
    • Pinheiro, J.C.1    Sun, D.X.2
  • 8
    • 0035545848 scopus 로고    scopus 로고
    • Learning object identification rules for information integration
    • Tejada S., Knoblock C.A., Minton S. Learning object identification rules for information integration. Inf. Syst. 26(8):2001;607-633.
    • (2001) Inf. Syst. , vol.26 , Issue.8 , pp. 607-633
    • Tejada, S.1    Knoblock, C.A.2    Minton, S.3
  • 11
    • 0031599960 scopus 로고    scopus 로고
    • Entity matching in heterogeneous databases: A distance-based decision model
    • Hawaii, USA
    • D. Dey, S. Sarkar, P. De, Entity matching in heterogeneous databases: a distance-based decision model, in: Proceedings of the HICSS, Hawaii, USA, 1998, pp. 305-313.
    • (1998) Proceedings of the HICSS , pp. 305-313
    • Dey, D.1    Sarkar, S.2    De, P.3
  • 15
    • 5644293347 scopus 로고    scopus 로고
    • Record linkage software and methods for merging administrative lists
    • Eurostat, Luxembourg
    • W.E. Winkler, Record linkage software and methods for merging administrative lists, in: Exchange of Technology and Know-How, Eurostat, Luxembourg, 1999, pp. 313-323.
    • (1999) Exchange of Technology and Know-how , pp. 313-323
    • Winkler, W.E.1
  • 17
    • 0034866854 scopus 로고    scopus 로고
    • Reducing inconsistency in integrating data from different sources
    • S. Luján-Mora, M. Palomar, Reducing inconsistency in integrating data from different sources, in: Proceedings of the IDEAS, 2001, pp. 209-218.
    • (2001) Proceedings of the IDEAS , pp. 209-218
    • Luján-Mora, S.1    Palomar, M.2
  • 23
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Cagliari, Italy
    • T.G. Dietterich, Ensemble methods in machine learning, in: Proceedings of the MCS, Cagliari, Italy, 2000, pp. 1-15.
    • (2000) Proceedings of the MCS , pp. 1-15
    • Dietterich, T.G.1
  • 24
    • 0034541162 scopus 로고    scopus 로고
    • Cascade Generalization
    • Gama J., Brazdil P. Cascade Generalization. Mach. Learn. 41(3):2000;315-343.
    • (2000) Mach. Learn. , vol.41 , Issue.3 , pp. 315-343
    • Gama, J.1    Brazdil, P.2
  • 27
    • 5644301178 scopus 로고    scopus 로고
    • Clustering database objects for semantic integration of heterogeneous databases
    • Boston, MA, USA, August
    • H. Zhao, S. Ram, Clustering database objects for semantic integration of heterogeneous databases, in: Proceedings of the AMCIS, Boston, MA, USA, August 2001, pp. 357-362.
    • (2001) Proceedings of the AMCIS , pp. 357-362
    • Zhao, H.1    Ram, S.2
  • 28
    • 3042518475 scopus 로고    scopus 로고
    • Detecting both schema-level and instance-level correspondences for the integration of e-catalogs
    • New Orleans, LA, USA
    • S. Ram, H. Zhao, Detecting both schema-level and instance-level correspondences for the integration of e-catalogs, in: Proceedings of the WITS, New Orleans, LA, USA, 2001, pp. 193-198.
    • (2001) Proceedings of the WITS , pp. 193-198
    • Ram, S.1    Zhao, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.