메뉴 건너뛰기




Volumn 75, Issue 1, 2009, Pages 78-89

Agnostic active learning

Author keywords

Active learning; Agnostic setting; Linear separators; Sample complexity

Indexed keywords

CLASSIFIERS;

EID: 56349166999     PISSN: 00220000     EISSN: 10902724     Source Type: Journal    
DOI: 10.1016/j.jcss.2008.07.003     Document Type: Article
Times cited : (236)

References (35)
  • 1
    • 0000710299 scopus 로고    scopus 로고
    • Queries and concept learning
    • Angluin D. Queries and concept learning. Mach. Learn. 2 (1998) 319-342
    • (1998) Mach. Learn. , vol.2 , pp. 319-342
    • Angluin, D.1
  • 2
    • 0742284346 scopus 로고    scopus 로고
    • Queries revisited
    • Angluin D. Queries revisited. Theoret. Comput. Sci. 313 2 (2004) 175-194
    • (2004) Theoret. Comput. Sci. , vol.313 , Issue.2 , pp. 175-194
    • Angluin, D.1
  • 4
    • 56349138839 scopus 로고    scopus 로고
    • M.-F. Balcan, A. Blum, A PAC-style model for learning from labeled and unlabeled data, in: Proceedings of the 18th Annual Conference on Computational Learning Theory (COLT), 2005
    • M.-F. Balcan, A. Blum, A PAC-style model for learning from labeled and unlabeled data, in: Proceedings of the 18th Annual Conference on Computational Learning Theory (COLT), 2005
  • 5
    • 56349102009 scopus 로고    scopus 로고
    • M.-F. Balcan, A. Broder, T. Zhang, Margin based active learning, in: Proceedings of the 20th Annual Conference on Computational Learning Theory (COLT), 2007
    • M.-F. Balcan, A. Broder, T. Zhang, Margin based active learning, in: Proceedings of the 20th Annual Conference on Computational Learning Theory (COLT), 2007
  • 6
    • 56349130412 scopus 로고    scopus 로고
    • M.-F. Balcan, E. Even-Dar, S. Hanneke, M. Kearns, Y. Mansour, J. Wortman, Asymptotic active learning, in: Workshop on Principles of Learning Design Problem, in Conjunction with the 21st Annual Conference on Neural Information Processing Systems (NIPS), 2007
    • M.-F. Balcan, E. Even-Dar, S. Hanneke, M. Kearns, Y. Mansour, J. Wortman, Asymptotic active learning, in: Workshop on Principles of Learning Design Problem, in Conjunction with the 21st Annual Conference on Neural Information Processing Systems (NIPS), 2007
  • 7
    • 84860640656 scopus 로고    scopus 로고
    • M.-F. Balcan, S. Hanneke, J. Wortman, The true sample complexity of active learning, in: Proceedings of the 21st Annual Conference on Computational Learning Theory (COLT), 2008
    • M.-F. Balcan, S. Hanneke, J. Wortman, The true sample complexity of active learning, in: Proceedings of the 21st Annual Conference on Computational Learning Theory (COLT), 2008
  • 8
    • 56349115643 scopus 로고    scopus 로고
    • E. Baum, K. Lang, Query learning can work poorly when a human oracle is used, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 1993
    • E. Baum, K. Lang, Query learning can work poorly when a human oracle is used, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 1993
  • 9
    • 56349113528 scopus 로고    scopus 로고
    • A. Blum, S. Chawla, Learning from labeled and unlabeled data using graph mincuts, in: Proceedings of the 18th International Conference on Machine Learning (ICML), 2001
    • A. Blum, S. Chawla, Learning from labeled and unlabeled data using graph mincuts, in: Proceedings of the 18th International Conference on Machine Learning (ICML), 2001
  • 10
    • 0031620208 scopus 로고    scopus 로고
    • A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: The 11th Annual Conference on Computational Learning Theory (COLT), 1998
    • A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: The 11th Annual Conference on Computational Learning Theory (COLT), 1998
  • 12
    • 84924053271 scopus 로고    scopus 로고
    • Theory of classification: A survey of recent advances
    • Bousquet O., Boucheron S., and Lugosi G. Theory of classification: A survey of recent advances. ESAIM Probab. Stat. 9 (2005) 323-375
    • (2005) ESAIM Probab. Stat. , vol.9 , pp. 323-375
    • Bousquet, O.1    Boucheron, S.2    Lugosi, G.3
  • 13
    • 0042466461 scopus 로고    scopus 로고
    • Learning monotone dnf from a teacher that almost does not answer membership queries
    • Bshouty N.H., and Eiron N. Learning monotone dnf from a teacher that almost does not answer membership queries. J. Mach. Learn. Res. 3 (2002) 49-57
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 49-57
    • Bshouty, N.H.1    Eiron, N.2
  • 14
    • 0016078377 scopus 로고
    • An interval estimation problem for controlled observations
    • Burnashev M., and Zigangirov K. An interval estimation problem for controlled observations. Probl. Inf. Transm. 10 (1974) 223-231
    • (1974) Probl. Inf. Transm. , vol.10 , pp. 223-231
    • Burnashev, M.1    Zigangirov, K.2
  • 15
    • 56349132957 scopus 로고    scopus 로고
    • R. Castro, R. Nowak, Minimax bounds for active learning, in: Proceedings of the 20th Annual Conference on Computational Learning Theory (COLT), 2007
    • R. Castro, R. Nowak, Minimax bounds for active learning, in: Proceedings of the 20th Annual Conference on Computational Learning Theory (COLT), 2007
  • 18
    • 0028424239 scopus 로고    scopus 로고
    • D. Cohn, L. Atlas, R. Ladner, Improving generalization with active learning, in: Proceedings of the 15th International Conference on Machine Learning (ICML), 1994, pp. 201-221
    • D. Cohn, L. Atlas, R. Ladner, Improving generalization with active learning, in: Proceedings of the 15th International Conference on Machine Learning (ICML), 1994, pp. 201-221
  • 23
    • 56349092103 scopus 로고    scopus 로고
    • S. Dasgupta, A. Kalai, C. Monteleoni, Analysis of perceptron-based active learning, in: Proceedings of the 18th Annual Conference on Computational Learning Theory (COLT), 2005
    • S. Dasgupta, A. Kalai, C. Monteleoni, Analysis of perceptron-based active learning, in: Proceedings of the 18th Annual Conference on Computational Learning Theory (COLT), 2005
  • 24
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund Y., Seung H.S., Shamir E., and Tishby N. Selective sampling using the query by committee algorithm. Mach. Learn. 28 2-3 (1997) 133-168
    • (1997) Mach. Learn. , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 25
    • 56349128040 scopus 로고    scopus 로고
    • S. Hanneke, A bound on the label complexity of agnostic active learning, in: Proceedings of the 24th Annual International Conference on Machine Learning (ICML), 2007
    • S. Hanneke, A bound on the label complexity of agnostic active learning, in: Proceedings of the 24th Annual International Conference on Machine Learning (ICML), 2007
  • 26
    • 0031339159 scopus 로고
    • An efficient membership-query algorithm for learning dnf with respect to the uniform distribution
    • Jackson J. An efficient membership-query algorithm for learning dnf with respect to the uniform distribution. J. Comput. System Sci. 57 3 (1995) 414-440
    • (1995) J. Comput. System Sci. , vol.57 , Issue.3 , pp. 414-440
    • Jackson, J.1
  • 27
    • 56349151606 scopus 로고    scopus 로고
    • T. Joachims, Transductive inference for text classification using support vector machines, in: Proceedings of the 16th International Conference on Machine Learning (ICML), 1999, pp. 200-209
    • T. Joachims, Transductive inference for text classification using support vector machines, in: Proceedings of the 16th International Conference on Machine Learning (ICML), 1999, pp. 200-209
  • 28
    • 56349155426 scopus 로고    scopus 로고
    • M. Kääriäinen, On active learning in the non-realizable case, in: Proceedings of 17th International Conference on Algorithmic Learning Theory (ALT), 2006
    • M. Kääriäinen, On active learning in the non-realizable case, in: Proceedings of 17th International Conference on Algorithmic Learning Theory (ALT), 2006
  • 29
    • 0344982834 scopus 로고    scopus 로고
    • A. Levin, P. Viola, Y. Freund, Unsupervised improvement of visual detectors using co-training, in: Proceedings of the 9th International Conference on Computer Vision (ICCV), 2003
    • A. Levin, P. Viola, Y. Freund, Unsupervised improvement of visual detectors using co-training, in: Proceedings of the 9th International Conference on Computer Vision (ICCV), 2003
  • 30
    • 0029403808 scopus 로고
    • On the sample complexity of PAC learning halfspaces against the uniform distribution
    • Long P.M. On the sample complexity of PAC learning halfspaces against the uniform distribution. IEEE Trans. Neural Networks 6 6 (1995) 1556-1559
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.6 , pp. 1556-1559
    • Long, P.M.1
  • 31
    • 56349104885 scopus 로고    scopus 로고
    • T. Mitchell, The discipline of machine learning, Technical Report CMU ML-06 108, 2006
    • T. Mitchell, The discipline of machine learning, Technical Report CMU ML-06 108, 2006
  • 32
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam K., McCallum A., Thrun S., and Mitchell T.M. Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39 2/3 (2000) 103-134
    • (2000) Mach. Learn. , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.M.4
  • 33
    • 1842843693 scopus 로고    scopus 로고
    • Co-trained support vector machines for large scale unstructured document classification using unlabeled data and syntactic information
    • Park S.B., and Zhang B.T. Co-trained support vector machines for large scale unstructured document classification using unlabeled data and syntactic information. Inform. Process. Manag. 40 3 (2004) 421-439
    • (2004) Inform. Process. Manag. , vol.40 , Issue.3 , pp. 421-439
    • Park, S.B.1    Zhang, B.T.2
  • 34
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik V., and Chervonenkis A. On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16 2 (1971) 264-280
    • (1971) Theory Probab. Appl. , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.