메뉴 건너뛰기




Volumn , Issue , 2008, Pages 2564-2571

Designing beta basis function neural network for optimization using particle swarm optimization

Author keywords

[No Author keywords available]

Indexed keywords

EVOLUTIONARY ALGORITHMS; NEURAL NETWORKS; OPTIMIZATION; PARTICLE SWARM OPTIMIZATION (PSO); PROBLEM SOLVING; VEGETATION;

EID: 56349165732     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2008.4634157     Document Type: Conference Paper
Times cited : (14)

References (44)
  • 2
    • 56349172081 scopus 로고    scopus 로고
    • M.A. Alimi, On-Line Analysis of Handwritten Arabic. A New Approach to Recognize Segmented Characters From Cursive Script Les Annales Maghrébines de l'Ingénieur, 14, no. 1, pp. 7-27. 2000.
    • M.A. Alimi, On-Line Analysis of Handwritten Arabic. "A New Approach to Recognize Segmented Characters From Cursive Script" Les Annales Maghrébines de l'Ingénieur, vol. 14, no. 1, pp. 7-27. 2000.
  • 3
    • 56349133086 scopus 로고    scopus 로고
    • the Modified Differential Evolution and the RBF (MDE-RBF) Neural Network for Time Series Prediction
    • Vancouver, July, pp
    • H. Dhahri, and M.A. Alimi, "the Modified Differential Evolution and the RBF (MDE-RBF) Neural Network for Time Series Prediction", Proc. International. Joint Conference on Neural Networks: IJCNN'06, Vancouver, July, pp 5245-5250, 2006;
    • (2006) Proc. International. Joint Conference on Neural Networks: IJCNN'06 , pp. 5245-5250
    • Dhahri, H.1    Alimi, M.A.2
  • 6
    • 0005938550 scopus 로고    scopus 로고
    • A Genetic Designed Beta Basis Function Neural Network for Approximating Multi-Variables Functions
    • V. Kurkova et al, eds, Springer-Verlag, Wien, pp
    • C. Aouiti, M.A. Alimi., and A. Maalej, "A Genetic Designed Beta Basis Function Neural Network for Approximating Multi-Variables Functions", in V. Kurkova et al. (eds.) Artificial Neural Nets and Genetic Algorithmes, Springer-Verlag, Wien, pp. 383-386 2001.
    • (2001) Artificial Neural Nets and Genetic Algorithmes , pp. 383-386
    • Aouiti, C.1    Alimi, M.A.2    Maalej, A.3
  • 10
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • S. Chen, S.A. Billings, W. Luo, "Orthogonal least squares methods and their application to non-linear system identification", Int. J.Control 50 (5) (1989) 1873-1896.
    • (1989) Int. J.Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 11
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S. Chen, C.F.N. Cowan, P.M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks", IEEE Trans. Neural Networks 2 (2) pp 302-309. 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 12
    • 0031277461 scopus 로고    scopus 로고
    • An efficient method to construct a radial basis function neural network classifier
    • Y. Hwang, S. Bang, "An efficient method to construct a radial basis function neural network classifier", Neural Networks 10 (8) 1495-1503. 1997.
    • (1997) Neural Networks , vol.10 , Issue.8 , pp. 1495-1503
    • Hwang, Y.1    Bang, S.2
  • 13
    • 0009806356 scopus 로고    scopus 로고
    • The Beta System: Toward a Change in Our Use of Neuro-Fuzzy Systems
    • Invited Paper, June, pp
    • M.A. Alimi "The Beta System: Toward a Change in Our Use of Neuro-Fuzzy Systems", International Journal of Management, Invited Paper, June, pp. 15-19., 2000.
    • (2000) International Journal of Management , pp. 15-19
    • Alimi, M.A.1
  • 14
    • 0022471098 scopus 로고
    • Learning representations by back propagating errors
    • D.E. Rumelhart, G.E. Hinton, R.J. Williams," Learning representations by back propagating errors",Nature 323 pp. 533-536. 1986
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 15
    • 33847321021 scopus 로고    scopus 로고
    • Fuzzy prediction of chaotic time series based on singular value decomposition
    • G.,Hong, and W. Hongwei Wang, "Fuzzy prediction of chaotic time series based on singular value decomposition", Applied Math. and Comp..,Vol. 185 (2), pp. 1171-1185, 2007.
    • (2007) Applied Math. and Comp , vol.185 , Issue.2 , pp. 1171-1185
    • Hong, G.1    Hongwei Wang, W.2
  • 16
    • 0038069064 scopus 로고    scopus 로고
    • Algorithm of Maximal Descent AMD for training Radial Basis Function Neural Networks
    • Man and Cybernetics: SMC, Hammamet, Tunisia, October
    • M. Njah, Alimi M.A., Chtourou M. and Tourki R. (2002), "Algorithm of Maximal Descent AMD for training Radial Basis Function Neural Networks», Proc. IEEE International Conference on Systems, Man and Cybernetics: SMC2002, Hammamet, Tunisia, October.
    • (2002) Proc. IEEE International Conference on Systems
    • Njah, M.1    Alimi, M.A.2    Chtourou, M.3    Tourki, R.4
  • 17
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S. Chen, C.F.N. Cowan, P.M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks", IEEE Trans. Neural Networks 2 (2) pp. 302-309. 1991
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 18
    • 0003599567 scopus 로고    scopus 로고
    • Introduction to radial basis function networks
    • Technical Report, Centre for Cognitive Science, University of Edinburgh, April
    • M.J.L. Orr, Introduction to radial basis function networks, Technical Report, Centre for Cognitive Science, University of Edinburgh, April 1996.
    • (1996)
    • Orr, M.J.L.1
  • 19
    • 0002370522 scopus 로고
    • Some extensions of radial basis functions and their applications in artificial intelligence
    • F. Girosi, "Some extensions of radial basis functions and their applications in artificial intelligence", Compute. Math. Appl. 24 (12) pp.61-80. 1992
    • (1992) Compute. Math. Appl , vol.24 , Issue.12 , pp. 61-80
    • Girosi, F.1
  • 21
    • 0028208116 scopus 로고
    • Evolving space-filling curves to distribute radial basis functions over an input space
    • B.A. Whitehead, T.D. Choate," Evolving space-filling curves to distribute radial basis functions over an input space", IEEE Trans. Neural Networks 5 (1) pp. 15-23. 1993
    • (1993) IEEE Trans. Neural Networks , vol.5 , Issue.1 , pp. 15-23
    • Whitehead, B.A.1    Choate, T.D.2
  • 22
    • 0030197198 scopus 로고
    • Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction
    • B.A. Whitehead, T.D. Choate," Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction", IEEE Trans. Neural Networks 7 (4)pp. 869-880. 1995.
    • (1995) IEEE Trans. Neural Networks , vol.7 , Issue.4 , pp. 869-880
    • Whitehead, B.A.1    Choate, T.D.2
  • 23
    • 0000517353 scopus 로고
    • Improving the performance of radial basis function networks by learning center locations
    • J.E. Moody, S.J. Hanson, R.P. Lippmann Eds, Morgan Kaufmann, Loas Altos, CA, pp
    • D. Wettschereck, T. Dietterich, "Improving the performance of radial basis function networks by learning center locations", in: J.E. Moody, S.J. Hanson, R.P. Lippmann (Eds.), "Advances in Neural Information Processing Systems", vol. 4, Morgan Kaufmann, Loas Altos, CA, pp. 1133-1140. 1992.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 1133-1140
    • Wettschereck, D.1    Dietterich, T.2
  • 24
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody, C. Darken, "Fast learning in networks of locally-tuned processing units", Neural Comput. 1 (2) pp.281-294. 1989.
    • (1989) Neural Comput , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 25
    • 0344522956 scopus 로고
    • A function estimation approach to sequential learning with neural networks,
    • Technical Report, CUED/F-INFENG/TR.111, Cambridge University Engineering Department, Cambridge, England, September
    • V. Kadirkamanathan, M. Niranjan, "A function estimation approach to sequential learning with neural networks," Technical Report, CUED/F-INFENG/TR.111, Cambridge University Engineering Department, Cambridge, England, September 1992.
    • (1992)
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 26
    • 0031277461 scopus 로고    scopus 로고
    • An efficient method to construct a radial basis function neural network classifier
    • Y. Hwang, S. Bang, "An efficient method to construct a radial basis function neural network classifier, Neural Networks 10 (8) pp. 1495-1503. 1997
    • (1997) Neural Networks , vol.10 , Issue.8 , pp. 1495-1503
    • Hwang, Y.1    Bang, S.2
  • 29
    • 0026992119 scopus 로고    scopus 로고
    • S. Chen, C.F.N. Cowan, P.M. Grant, Orthogonal least squares algorithm for training multi-output radial basis function networks, in: IEEE Proceedings, Part F 139, pp. 378-384, 1992.
    • S. Chen, C.F.N. Cowan, P.M. Grant, "Orthogonal least squares algorithm for training multi-output radial basis function networks", in: IEEE Proceedings, vol. Part F 139, pp. 378-384, 1992.
  • 30
    • 33751560009 scopus 로고
    • Regularization in the selection of radial basis function centers
    • Neural Comput. 7 (3,)pp
    • M. Orr, "Regularization in the selection of radial basis function centers", Neural Comput. 7 (3,)pp. 606-623, 1995.
    • (1995) , pp. 606-623
    • Orr, M.1
  • 31
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S. Chen, C.F.N. Cowan, P.M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks", IEEE Trans. Neural Networks 2 (2),pp 302-309, 1991
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 32
    • 85042234389 scopus 로고    scopus 로고
    • Optimizing the widths of radial basis functions
    • IEEE, Belo Horizonte, Brazil, pp
    • M.J.L. Orr, "Optimizing the widths of radial basis functions", in: Vth Brazilian Symposium on Neural Networks, IEEE, Belo Horizonte, Brazil, pp. 26-29, 1998.
    • (1998) Vth Brazilian Symposium on Neural Networks , pp. 26-29
    • Orr, M.J.L.1
  • 33
    • 0003853519 scopus 로고    scopus 로고
    • Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces
    • Technical Report TR-95-012, ICSI, 1999
    • R. Storn, K.Price, "Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces", Technical Report TR-95-012, ICSI, 1999.
    • Storn, R.1    Price, K.2
  • 34
    • 56349091781 scopus 로고    scopus 로고
    • J.H. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Harbor, 1975.
    • J.H. Holland, "Adaptation in Natural and Artificial Systems". University of Michigan Press, Ann Harbor, 1975.
  • 38
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • M.C. Mackey, L. Glass, "Oscillation and chaos in physiological control systems", Science 197 (1977) 287-289.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 39
    • 0030197198 scopus 로고
    • Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction
    • B.A. Whitehead, T.D. Choate, "Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction", IEEE Trans. Neural Networks 7 (4),pp.869-880, 1995.
    • (1995) IEEE Trans. Neural Networks , vol.7 , Issue.4 , pp. 869-880
    • Whitehead, B.A.1    Choate, T.D.2
  • 40
    • 0033340056 scopus 로고    scopus 로고
    • G.P. Liu, V. Kadirkamanathan, Multi objective criteria for neural network structure selection and identification of nonlinear systems using genetic algorithms, in: IEE Proceedings Part P: Control Theory and Applications, 146(5), pp. 373-382, 1999;
    • G.P. Liu, V. Kadirkamanathan, "Multi objective criteria for neural network structure selection and identification of nonlinear systems using genetic algorithms", in: IEE Proceedings Part P: Control Theory and Applications, vol. 146(5), pp. 373-382, 1999;
  • 41
    • 84950276031 scopus 로고    scopus 로고
    • E.G.M. de Lacerda, A.C.P.L.F. de Carvalho, T.B. Ludermir, Evolutionary optimization of RBF networks, in: VIth Brazilian Symposium on Neural Networks, Sociedade Brasileira de Computaca o (SBC), I, IEEE, Silverspring, MD, pp. 219-224, 2000.
    • E.G.M. de Lacerda, A.C.P.L.F. de Carvalho, T.B. Ludermir, "Evolutionary optimization of RBF networks", in: VIth Brazilian Symposium on Neural Networks, Sociedade Brasileira de Computaca "o (SBC), vol. I, IEEE, Silverspring, MD, pp. 219-224, 2000.
  • 42
    • 13844256702 scopus 로고    scopus 로고
    • A Generalized Growing and Pruning RBF Neural Network for Function Approximation
    • G. Huang, P. Saratchandran and N. Sundararajan, "A Generalized Growing and Pruning RBF Neural Network for Function Approximation", IEEE Trans.Neural Netw. 16, 1 2005.
    • (2005) IEEE Trans.Neural Netw , vol.16 , pp. 1
    • Huang, G.1    Saratchandran, P.2    Sundararajan, N.3
  • 43
    • 0037581830 scopus 로고    scopus 로고
    • Hierarchical Genetic Algorithm for near optimal Feedforward Neural Network Design
    • Int. Jour, of Neu.Syst
    • G. Yen and H. Lu, "Hierarchical Genetic Algorithm for near optimal Feedforward Neural Network Design", Int. Jour, of Neu.Syst, Vol. 12, 31-43, 2000.
    • (2000) , vol.12 , pp. 31-43
    • Yen, G.1    Lu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.