메뉴 건너뛰기




Volumn 78, Issue 19, 2008, Pages

Mixed columnar-plaquette crystal of correlated fermions on the two-dimensional pyrochlore lattice at fractional filling

Author keywords

[No Author keywords available]

Indexed keywords


EID: 56349150060     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.78.195101     Document Type: Article
Times cited : (10)

References (26)
  • 1
    • 4043160762 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.80.2933
    • B. Canals and C. Lacroix, Phys. Rev. Lett. 10.1103/PhysRevLett.80.2933 80, 2933 (1998).
    • (1998) Phys. Rev. Lett. , vol.80 , pp. 2933
    • Canals, B.1    Lacroix, C.2
  • 4
    • 27144525875 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.95.127205
    • S. Wessel and M. Troyer, Phys. Rev. Lett. 10.1103/PhysRevLett.95.127205 95, 127205 (2005)
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 127205
    • Wessel, S.1    Troyer, M.2
  • 5
    • 27144529953 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.95.127206
    • D. Heidarian and K. Damle, Phys. Rev. Lett. 10.1103/PhysRevLett.95.127206 95, 127206 (2005)
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 127206
    • Heidarian, D.1    Damle, K.2
  • 8
    • 36849077169 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.76.235107
    • A. Sen, K. Damle, and T. Senthil, Phys. Rev. B 10.1103/PhysRevB.76.235107 76, 235107 (2007).
    • (2007) Phys. Rev. B , vol.76 , pp. 235107
    • Sen, A.1    Damle, K.2    Senthil, T.3
  • 11
    • 0036945249 scopus 로고    scopus 로고
    • 10.1002/1521-3889(200212)11:12<892::AID-ANDP892>3.0.CO;2-J
    • P. Fulde, K. Penc, and N. Shannon, Ann. Phys. 11, 892 (2002). 10.1002/1521-3889(200212)11:12<892::AID-ANDP892>3.0.CO;2-J
    • (2002) Ann. Phys. , vol.11 , pp. 892
    • Fulde, P.1    Penc, K.2    Shannon, N.3
  • 13
    • 0141649303 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.68.054405
    • R. Moessner and S. L. Sondhi, Phys. Rev. B 10.1103/PhysRevB.68.054405 68, 054405 (2003).
    • (2003) Phys. Rev. B , vol.68 , pp. 054405
    • Moessner, R.1    Sondhi, S.L.2
  • 15
    • 34548753333 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.76.115104
    • D. Poilblanc, Phys. Rev. B 10.1103/PhysRevB.76.115104 76, 115104 (R) (2007).
    • (2007) Phys. Rev. B , vol.76 , pp. 115104
    • Poilblanc, D.1
  • 16
    • 50049128204 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.78.075112
    • S. Wessel, Phys. Rev. B 10.1103/PhysRevB.78.075112 78, 075112 (2008).
    • (2008) Phys. Rev. B , vol.78 , pp. 075112
    • Wessel, S.1
  • 19
    • 56349142951 scopus 로고    scopus 로고
    • For an N=72 cluster with PBC, the Hilbert space, as defined previously (using spin inversion, point-group symmetries, and translations keeping invariant each sublattice of the dimer lattice) in the most symmetric sector (A1,q=0) has 192790 configurations; for t2 =1 and W=-2, the energy of the ground state is EGS =-62.63747973.
    • For an N=72 cluster with PBC, the Hilbert space, as defined previously (using spin inversion, point-group symmetries, and translations keeping invariant each sublattice of the dimer lattice) in the most symmetric sector (A1,q=0) has 192790 configurations; for t2 =1 and W=-2, the energy of the ground state is EGS =-62.63747973...
  • 22
    • 56349116695 scopus 로고    scopus 로고
    • For the W=0 case (derived from the extended Hubbard model), the energy per particle of the RSPC (and MCPC-2) variational wave function in units of t2 is E=-1, while the exact values on periodic clusters are respectively N=32, 48, 64 and 72 are respectively (given with 0.001 precision): -1.166;-1.136;-1.088;- 1.099. (The two last clusters being oriented at π/4 from each other, the relative position of their ground-state energies is not anormal). A rough estimate would give E=-1.06 (2) in the thermodynamic limit.
    • For the W=0 case (derived from the extended Hubbard model), the energy per particle of the RSPC (and MCPC-2) variational wave function in units of t2 is E=-1, while the exact values on periodic clusters are respectively N=32, 48, 64 and 72 are respectively (given with 0.001 precision): -1.166;-1.136;-1.088;- 1.099. (The two last clusters being oriented at π/4 from each other, the relative position of their ground-state energies is not anormal). A rough estimate would give E=-1.06 (2) in the thermodynamic limit.
  • 23
    • 56349104505 scopus 로고    scopus 로고
    • Close to W= t2 and in the thermodynamic limit, the RK wave function has an energy of 2 (W- t2) nfl per uncrossed plaquette (so twice as much per particle), where nfl, the probability for a given plaquette to be flippable, equals 1/4. Similarly, in the bosonic case, the flippability is nfl =1/4 and the energy of the RK state equals (V-t) /2 per particle.
    • Close to W= t2 and in the thermodynamic limit, the RK wave function has an energy of 2 (W- t2) nfl per uncrossed plaquette (so twice as much per particle), where nfl, the probability for a given plaquette to be flippable, equals 1/4. Similarly, in the bosonic case, the flippability is nfl =1/4 and the energy of the RK state equals (V-t) /2 per particle.
  • 24
    • 56349148288 scopus 로고    scopus 로고
    • Using the spin inversion symmetry allows one to compute eigenstates and eigenenergies in sectors of total spin either odd or even, but not explicitly in the S=0 or S=1 sector. However it is known that states of lowest energy are of total spin S=0 or S=1.
    • Using the spin inversion symmetry allows one to compute eigenstates and eigenenergies in sectors of total spin either odd or even, but not explicitly in the S=0 or S=1 sector. However it is known that states of lowest energy are of total spin S=0 or S=1.
  • 25
    • 56349092858 scopus 로고    scopus 로고
    • Two clusters of size N=80 would be tractable by exact diagonalization, but there either the π/2 rotation symmetry or the reflexion symmetry would be lost (in comparison to the N=64 cluster for instance) which would be problematic for determining the quantum numbers characterizing the phases of the model. The next cluster available (by increasing N) and possessing these symmetries would be the N=128 cluster, far beyond the limits of existing numerical resources for exact diagonalizations.
    • Two clusters of size N=80 would be tractable by exact diagonalization, but there either the π/2 rotation symmetry or the reflexion symmetry would be lost (in comparison to the N=64 cluster for instance) which would be problematic for determining the quantum numbers characterizing the phases of the model. The next cluster available (by increasing N) and possessing these symmetries would be the N=128 cluster, far beyond the limits of existing numerical resources for exact diagonalizations.
  • 26
    • 19744370200 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.93.197204
    • D. Poilblanc, Phys. Rev. Lett. 10.1103/PhysRevLett.93.197204 93, 197204 (2004).
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 197204
    • Poilblanc, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.