메뉴 건너뛰기




Volumn , Issue , 2008, Pages 2596-2603

Unsupervised learning of categories from sets of partially matching image features for power line inspection robot

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING METHODS; COMPLEX BACKGROUNDS; COMPUTATIONALLY EFFICIENT; CONSISTENT SUBSETS; FEATURE CORRESPONDENCES; FIELD EXPERIMENTS; IMAGE FEATURES; INSPECTION ROBOTS; LEARNING OBJECTS; LOCAL FEATURES; MATCH ALGORITHMS; POWER LINES; POWERLINE INSPECTIONS; VISION-BASED;

EID: 56349144313     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2008.4634161     Document Type: Conference Paper
Times cited : (10)

References (25)
  • 7
    • 24644499267 scopus 로고    scopus 로고
    • Pyramid Match Kernels: Discriminative Classification with Sets of Image Features
    • Technical Report MIT-CSAIL-TR-2006-020, MIT, March
    • K. Grauman and T. Darrell, "Pyramid Match Kernels: Discriminative Classification with Sets of Image Features." Technical Report MIT-CSAIL-TR-2006-020, MIT, March 2006.
    • (2006)
    • Grauman, K.1    Darrell, T.2
  • 23
    • 33745845466 scopus 로고    scopus 로고
    • Object categorization with SVM: Kernels for local features
    • Technical report, MPI for Biological Cybernetics
    • J. Eichhorn and O. Chapelle. "Object categorization with SVM: kernels for local features." Technical report, MPI for Biological Cybernetics, 2004.
    • (2004)
    • Eichhorn, J.1    Chapelle, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.