메뉴 건너뛰기




Volumn 36, Issue 2 PART 2, 2009, Pages 2794-2804

POP algorithm: Kernel-based imputation to treat missing values in knowledge discovery from databases

Author keywords

Deterministic regression imputation; Knowledge discovery; Missing value; Random regression imputation

Indexed keywords

AUTOCORRELATION; DATA MINING; DISTRIBUTION FUNCTIONS; INFERENCE ENGINES; REGRESSION ANALYSIS;

EID: 56349110355     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.01.059     Document Type: Article
Times cited : (54)

References (25)
  • 1
    • 0034339545 scopus 로고    scopus 로고
    • Multiple imputation for missing data: A cautionary tale
    • Allison P.D. Multiple imputation for missing data: A cautionary tale. Sociological Methods and Research 28 (2000) 301
    • (2000) Sociological Methods and Research , vol.28 , pp. 301
    • Allison, P.D.1
  • 2
    • 0242498488 scopus 로고    scopus 로고
    • An analysis of four missing data treatment methods for supervised learning
    • Batista G.E., and Monard M.C. An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence 17 5-6 (2003) 519-533
    • (2003) Applied Artificial Intelligence , vol.17 , Issue.5-6 , pp. 519-533
    • Batista, G.E.1    Monard, M.C.2
  • 3
    • 56349125437 scopus 로고    scopus 로고
    • Blake, C. L., & Merz, C. J. (1998). UCI Repository of machine learning database []. Irvine, CA: University of California, Department of Information and Computer Science.
    • Blake, C. L., & Merz, C. J. (1998). UCI Repository of machine learning database []. Irvine, CA: University of California, Department of Information and Computer Science.
  • 5
    • 84976775282 scopus 로고
    • Handling missing data by using stored truth values
    • Gessert G. Handling missing data by using stored truth values. SIGMOD Record 20 3 (1991) 30-42
    • (1991) SIGMOD Record , vol.20 , Issue.3 , pp. 30-42
    • Gessert, G.1
  • 6
    • 0030527014 scopus 로고    scopus 로고
    • Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures
    • Graham J.W., Hofer S.M., and MacKinnon D.P. Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures. Multivariate Behavioral Research 31 (1996) 197-218
    • (1996) Multivariate Behavioral Research , vol.31 , pp. 197-218
    • Graham, J.W.1    Hofer, S.M.2    MacKinnon, D.P.3
  • 7
    • 0031111885 scopus 로고    scopus 로고
    • Annotation: What can be done about missing data? Approaches to imputation
    • Heitjan D.F. Annotation: What can be done about missing data? Approaches to imputation. American Journal of Public Health 87 4 (1997) 548-550
    • (1997) American Journal of Public Health , vol.87 , Issue.4 , pp. 548-550
    • Heitjan, D.F.1
  • 9
    • 85082308385 scopus 로고    scopus 로고
    • Imputation of missing data using machine learning techniques
    • Lakshminarayan K., Harp S.A., Goldman R.P., and Samad T. Imputation of missing data using machine learning techniques. KDD-1996 (1996) 140-145
    • (1996) KDD-1996 , pp. 140-145
    • Lakshminarayan, K.1    Harp, S.A.2    Goldman, R.P.3    Samad, T.4
  • 10
    • 0033225727 scopus 로고    scopus 로고
    • Imputation of missing data in industrial databases
    • Lakshminarayan K., Harp S.A., and Samad T. Imputation of missing data in industrial databases. Applied Intelligence 11 3 (1996) 259-275
    • (1996) Applied Intelligence , vol.11 , Issue.3 , pp. 259-275
    • Lakshminarayan, K.1    Harp, S.A.2    Samad, T.3
  • 13
    • 56349134693 scopus 로고    scopus 로고
    • Magnani, M. (2004). Techniques for dealing with missing data in knowledge discovery tasks. .
    • Magnani, M. (2004). Techniques for dealing with missing data in knowledge discovery tasks. .
  • 14
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani F., and Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing 42 8 (2004) 1778-1790
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 15
    • 0027597058 scopus 로고
    • Kernel classification rules from missing data
    • Pawlak M. Kernel classification rules from missing data. IEEE Transactions on Information Theory 39 3 (1993) 979-988
    • (1993) IEEE Transactions on Information Theory , vol.39 , Issue.3 , pp. 979-988
    • Pawlak, M.1
  • 16
    • 0032126086 scopus 로고    scopus 로고
    • Treatment of missing data values in a neural network based decision support system for acute abdominal pain
    • Pesonen E., Eskelinen M., and Juhola M. Treatment of missing data values in a neural network based decision support system for acute abdominal pain. Artificial Intelligence in Medicine 13 3 (1998) 139-146
    • (1998) Artificial Intelligence in Medicine , vol.13 , Issue.3 , pp. 139-146
    • Pesonen, E.1    Eskelinen, M.2    Juhola, M.3
  • 17
    • 56349102027 scopus 로고    scopus 로고
    • Qin, Y. S., & Rao, J. N. K. (2004). Confidence intervals for parameters of the response variable in a linear model with missing data. Technique report, School of Math & Statistics, Carleton University.
    • Qin, Y. S., & Rao, J. N. K. (2004). Confidence intervals for parameters of the response variable in a linear model with missing data. Technique report, School of Math & Statistics, Carleton University.
  • 18
    • 0043198674 scopus 로고    scopus 로고
    • Robust learning with missing data
    • Ramoni M., and Sebastiani P. Robust learning with missing data. Machine Learning 45 2 (2001) 147-170
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 147-170
    • Ramoni, M.1    Sebastiani, P.2
  • 20
    • 0000086228 scopus 로고
    • Moments and distributions of estimates of population parameters from fragments samples
    • Walks S. Moments and distributions of estimates of population parameters from fragments samples. Annals of Mathematical Statistics 3 (1932) 163-203
    • (1932) Annals of Mathematical Statistics , vol.3 , pp. 163-203
    • Walks, S.1
  • 21
    • 0035995109 scopus 로고    scopus 로고
    • Empirical likelihood-based inference in linear models with missing data
    • Wang Q., and Rao J.N.K. Empirical likelihood-based inference in linear models with missing data. Scandinavian Journal of Statistics 29 (2002) 563-576
    • (2002) Scandinavian Journal of Statistics , vol.29 , pp. 563-576
    • Wang, Q.1    Rao, J.N.K.2
  • 22
    • 0036049743 scopus 로고    scopus 로고
    • Empirical likelihood-based inference under imputation for missing response data
    • Wang Q., and Rao J.N.K. Empirical likelihood-based inference under imputation for missing response data. Annals of Statistics 30 (2002) 896-924
    • (2002) Annals of Statistics , vol.30 , pp. 896-924
    • Wang, Q.1    Rao, J.N.K.2
  • 25
    • 2142657869 scopus 로고    scopus 로고
    • Information enhancement for data mining
    • Zhang S., Zhang C., and Yang Q. Information enhancement for data mining. IEEE Intelligent Systems 19 2 (2004) 12-13
    • (2004) IEEE Intelligent Systems , vol.19 , Issue.2 , pp. 12-13
    • Zhang, S.1    Zhang, C.2    Yang, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.