-
1
-
-
24644506125
-
-
10.1126/science.1108813
-
D. A. Allwood, Science 309, 1688 (2005). 10.1126/science.1108813
-
(2005)
Science
, vol.309
, pp. 1688
-
-
Allwood, D.A.1
-
2
-
-
56349107400
-
-
S. S. P. Parkin, U.S. Patent No. US 683 400 5 (2004).
-
(2004)
-
-
Parkin, S.S.P.1
-
3
-
-
1942488190
-
-
10.1126/science.1095068
-
S.-B. Choe, Science 304, 420 (2004). 10.1126/science.1095068
-
(2004)
Science
, vol.304
, pp. 420
-
-
Choe, S.-B.1
-
5
-
-
33748641485
-
-
10.1038/nature05093
-
L. Thomas, Nature (London) 443, 197 (2006). 10.1038/nature05093
-
(2006)
Nature (London)
, vol.443
, pp. 197
-
-
Thomas, L.1
-
6
-
-
34247871293
-
-
10.1103/PhysRevLett.98.187202
-
G. Meier, Phys. Rev. Lett. 98, 187202 (2007). 10.1103/PhysRevLett.98. 187202
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 187202
-
-
Meier, G.1
-
7
-
-
34047109683
-
-
10.1038/nmat1867
-
K. Yamada, Nature Mater. 6, 270 (2007). 10.1038/nmat1867
-
(2007)
Nature Mater.
, vol.6
, pp. 270
-
-
Yamada, K.1
-
8
-
-
43049141858
-
-
10.1103/PhysRevLett.100.176601
-
M. Bolte, Phys. Rev. Lett. 100, 176601 (2008). 10.1103/PhysRevLett.100. 176601
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 176601
-
-
Bolte, M.1
-
9
-
-
42049092112
-
-
10.1126/science.1154587
-
M. Hayashi, Science 320, 209 (2008). 10.1126/science.1154587
-
(2008)
Science
, vol.320
, pp. 209
-
-
Hayashi, M.1
-
10
-
-
33847319583
-
-
10.1103/PhysRevB.75.054421
-
B. Krüger, Phys. Rev. B 75, 054421 (2007). 10.1103/PhysRevB.75. 054421
-
(2007)
Phys. Rev. B
, vol.75
, pp. 054421
-
-
Krüger, B.1
-
11
-
-
37649008930
-
-
10.1103/PhysRevB.76.224426
-
B. Krüger, Phys. Rev. B 76, 224426 (2007). 10.1103/PhysRevB.76. 224426
-
(2007)
Phys. Rev. B
, vol.76
, pp. 224426
-
-
Krüger, B.1
-
12
-
-
20944433733
-
-
10.1063/1.1860971
-
A. Puzic, J. Appl. Phys. 97, 10E704 (2005). 10.1063/1.1860971
-
(2005)
J. Appl. Phys.
, vol.97
-
-
Puzic, A.1
-
13
-
-
35349011059
-
-
10.1103/PhysRevLett.99.167202
-
K. Kuepper, Phys. Rev. Lett. 99, 167202 (2007). 10.1103/PhysRevLett.99. 167202
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 167202
-
-
Kuepper, K.1
-
14
-
-
21744452342
-
-
10.1038/nature03719
-
W. Chao, Nature (London) 435, 1210 (2005). 10.1038/nature03719
-
(2005)
Nature (London)
, vol.435
, pp. 1210
-
-
Chao, W.1
-
15
-
-
33646753695
-
-
10.1063/1.2167060
-
D.-H. Kim, J. Appl. Phys. 99, 08H303 (2006). 10.1063/1.2167060
-
(2006)
J. Appl. Phys.
, vol.99
-
-
Kim, D.-H.1
-
16
-
-
0000966478
-
-
10.1103/PhysRevB.42.7262
-
C. T. Chen, Phys. Rev. B 42, 7262 (1990). 10.1103/PhysRevB.42.7262
-
(1990)
Phys. Rev. B
, vol.42
, pp. 7262
-
-
Chen, C.T.1
-
17
-
-
56349145210
-
-
The experimental high-frequency setup is accounted by -3 dB in the calculations of the current density.
-
The experimental high-frequency setup is accounted by -3 dB in the calculations of the current density
-
-
-
-
18
-
-
56349091874
-
-
See EPAPS Document No. E-PRBMDO-78-R19838 for supplementary movie (movie1.avi) for a DW oscillation due to a 1.1 ns pulse. For more information on EPAPS, see
-
See EPAPS Document No. E-PRBMDO-78-R19838 for supplementary movie (movie1.avi) for a DW oscillation due to a 1.1 ns pulse. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
-
-
-
-
19
-
-
56349143301
-
-
See EPAPS Document No. E-PRBMDO-78-R19838 for supplementary movies: movie1.avi for a DW oscillation due to a 1.1 ns pulse, movie2.avi for a DW oscillation due to a 2.2 ns pulse, and movie3.avi for a DW oscillation due to a 3.3 ns pulse. For more information on EPAPS, see
-
See EPAPS Document No. E-PRBMDO-78-R19838 for supplementary movies: movie1.avi for a DW oscillation due to a 1.1 ns pulse, movie2.avi for a DW oscillation due to a 2.2 ns pulse, and movie3.avi for a DW oscillation due to a 3.3 ns pulse. For more information on EPAPS, see http://www.aip.org/pubservs/ epaps.html.
-
-
-
-
20
-
-
56349108102
-
-
Sending pulses through the sample with applied static fields generates an oscillation around the new equilibrium position.
-
Sending pulses through the sample with applied static fields generates an oscillation around the new equilibrium position.
-
-
-
-
21
-
-
19644388061
-
-
10.1103/PhysRevLett.93.127204
-
S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004). 10.1103/PhysRevLett.93.127204
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 127204
-
-
Zhang, S.1
Li, Z.2
-
22
-
-
56349168469
-
-
In a reversed magnetic configuration the DW initially moves in the inverse direction when the Oersted field remains the same. It is similar to change the field direction on an unchanged magnetic configuration; compare Fig. 4.
-
In a reversed magnetic configuration the DW initially moves in the inverse direction when the Oersted field remains the same. It is similar to change the field direction on an unchanged magnetic configuration; compare Fig. 4.
-
-
-
-
24
-
-
56349084177
-
-
Only for the first two data points of the fit in Fig. 2 the deflection exceeds 64 nm. At 64 nm the difference of the two potentials is 7%.
-
Only for the first two data points of the fit in Fig. 2 the deflection exceeds 64 nm. At 64 nm the difference of the two potentials is 7%.
-
-
-
-
25
-
-
9144255659
-
-
10.1038/nature03009
-
E. Saitoh, Nature (London) 432, 203 (2004). 10.1038/nature03009
-
(2004)
Nature (London)
, vol.432
, pp. 203
-
-
Saitoh, E.1
|