메뉴 건너뛰기




Volumn , Issue , 2008, Pages 87-96

Optimizing Sparse Matrix-Vector Multiplication using index and value compression

Author keywords

Data compression; Memory bandwidth; Sparse matrix

Indexed keywords

BANDWIDTH; BANDWIDTH COMPRESSION; NUMERICAL METHODS; ONLINE SEARCHING; TELECOMMUNICATION SYSTEMS; VECTORS;

EID: 55849146932     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1366230.1366244     Document Type: Conference Paper
Times cited : (82)

References (24)
  • 3
    • 34547626759 scopus 로고    scopus 로고
    • High throughput compression of double-precision floating-point data
    • Washington, DC, USA, IEEE Computer Society
    • M. Burtscher and P. Ratanaworabhan. High throughput compression of double-precision floating-point data. In DCC '07: Proceedings of the 2007 Data Compression Conference, pages 293-302, Washington, DC, USA, 2007. IEEE Computer Society.
    • (2007) DCC '07: Proceedings of the 2007 Data Compression Conference , pp. 293-302
    • Burtscher, M.1    Ratanaworabhan, P.2
  • 4
    • 0003197949 scopus 로고    scopus 로고
    • University of Florida sparse matrix collection
    • T. Davis. University of Florida sparse matrix collection. NA Digest, 97(23):7, 1997.
    • (1997) NA Digest , vol.97 , Issue.23 , pp. 7
    • Davis, T.1
  • 8
    • 84949647432 scopus 로고    scopus 로고
    • Optimizing sparse matrix computations for register reuse in SPARSITY
    • E. Im and K. Yelick. Optimizing sparse matrix computations for register reuse in SPARSITY. Lecture Notes in Computer Science, 2073:127-136, 2001.
    • (2001) Lecture Notes in Computer Science , vol.2073 , pp. 127-136
    • Im, E.1    Yelick, K.2
  • 10
    • 34548206782 scopus 로고    scopus 로고
    • Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems)
    • New York, NY, USA, ACM
    • J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra. Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems). In SC '06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page 113, New York, NY, USA, 2006. ACM.
    • (2006) SC '06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing , pp. 113
    • Langou, J.1    Langou, J.2    Luszczek, P.3    Kurzak, J.4    Buttari, A.5    Dongarra, J.6
  • 13
    • 3042618790 scopus 로고    scopus 로고
    • J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera. Improving the locality of the sparse matrix-vector product on shared memory multiprocessors. In PDP, pages 66-71. IEEE Computer Society, 2004.
    • J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera. Improving the locality of the sparse matrix-vector product on shared memory multiprocessors. In PDP, pages 66-71. IEEE Computer Society, 2004.
  • 14
    • 25644439819 scopus 로고    scopus 로고
    • Performance optimization of irregular codes based on the combination of reordering and blocking techniques
    • J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera. Performance optimization of irregular codes based on the combination of reordering and blocking techniques. Parallel Computing, 31(8-9):858-876, 2005.
    • (2005) Parallel Computing , vol.31 , Issue.8-9 , pp. 858-876
    • Pichel, J.C.1    Heras, D.B.2    Cabaleiro, J.C.3    Rivera, F.F.4
  • 15
    • 85031264203 scopus 로고    scopus 로고
    • Improving performance of sparse matrix-vector multiplication. In Supercomputing'99, Portland, OR
    • Nov
    • A. Pinar and M. T. Heath. Improving performance of sparse matrix-vector multiplication. In Supercomputing'99, Portland, OR, Nov. 1999. ACM SIGARCH and IEEE.
    • (1999) ACM SIGARCH and IEEE
    • Pinar, A.1    Heath, M.T.2
  • 16
    • 56749108298 scopus 로고    scopus 로고
    • Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical report, Computer Science Department, University of Minnesota, Minneapolis, MN 55455, June 1994. Version 2
    • Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical report, Computer Science Department, University of Minnesota, Minneapolis, MN 55455, June 1994. Version 2.
  • 19
    • 0031269220 scopus 로고    scopus 로고
    • Improving the memory-system performance of sparse-matrix vector multiplication
    • S. Toledo. Improving the memory-system performance of sparse-matrix vector multiplication. IBM Journal of Research and Development, 41(6):711-725, 1997.
    • (1997) IBM Journal of Research and Development , vol.41 , Issue.6 , pp. 711-725
    • Toledo, S.1
  • 20
    • 84990830919 scopus 로고    scopus 로고
    • Performance optimizations and bounds for sparse matrix-vector multiply
    • Baltimore, MD, Nov
    • R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala, and B. Lee. Performance optimizations and bounds for sparse matrix-vector multiply. In Supercomputing, Baltimore, MD, Nov. 2002.
    • (2002) Supercomputing
    • Vuduc, R.1    Demmel, J.2    Yelick, K.3    Kamil, S.4    Nishtala, R.5    Lee, B.6
  • 21
    • 33646389518 scopus 로고    scopus 로고
    • Fast sparse matrix-vector multiplication by exploiting variable block structure
    • High Performance Computing and Communications, of, Springer
    • R. W. Vuduc and H. Moon. Fast sparse matrix-vector multiplication by exploiting variable block structure. In High Performance Computing and Communications, volume 3726 of Lecture Notes in Computer Science, pages 807-816. Springer, 2005.
    • (2005) Lecture Notes in Computer Science , vol.3726 , pp. 807-816
    • Vuduc, R.W.1    Moon, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.