-
1
-
-
84918194623
-
-
Proceedings of the Institute of Radio Engineers
-
M. Wolf, Proceedings of the Institute of Radio Engineers, 1960 (unpublished), Vol. 48, pp. 1246-1263.
-
(1960)
, vol.48
, pp. 1246-1263
-
-
Wolf, M.1
-
2
-
-
0031164889
-
-
10.1103/PhysRevLett.78.5014
-
A. Luque and A. Martí, Phys. Rev. Lett. 10.1103/PhysRevLett.78. 5014 78, 5014 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 5014
-
-
Luque, A.1
Martí, A.2
-
3
-
-
0004237593
-
-
edited by H. Ahmed, M. Pepper, and A. Broers (Cambridge University Press, Cambridge, UK
-
E. F. Schubert, in Doping in III-V Semiconductors, edited by, H. Ahmed,,, M. Pepper,, and, A. Broers, (Cambridge University Press, Cambridge, UK, 1993), Chap., pp. 41-44.
-
(1993)
Doping in III-V Semiconductors
, pp. 41-44
-
-
Schubert, E.F.1
-
4
-
-
0037091425
-
-
10.1103/PhysRevB.65.165115
-
P. Wahnón and C. Tablero, Phys. Rev. B 10.1103/PhysRevB.65.165115 65, 165115 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 165115
-
-
Wahnón, P.1
Tablero, C.2
-
5
-
-
0942279071
-
-
10.1103/PhysRevLett.91.246403
-
K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, Phys. Rev. Lett. 10.1103/PhysRevLett.91.246403 91, 246403 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 246403
-
-
Yu, K.M.1
Walukiewicz, W.2
Wu, J.3
Shan, W.4
Beeman, J.W.5
Scarpulla, M.A.6
Dubon, O.D.7
Becla, P.8
-
6
-
-
0037373348
-
-
10.1016/S0927-0256(02)00425-1
-
C. Tablero, A. J. García, J. J. Fernández, P. Palacios, and P. Wahnón, Comput. Mater. Sci. 10.1016/S0927-0256(02)00425-1 27, 58 (2003).
-
(2003)
Comput. Mater. Sci.
, vol.27
, pp. 58
-
-
Tablero, C.1
García, A.J.2
Fernández, J.J.3
Palacios, P.4
Wahnón, P.5
-
9
-
-
17644375848
-
-
10.1016/j.solmat.2004.06.016
-
C. Tablero, P. Palacios, J. Fernández, and P. Wahnón, Sol. Energy Mater. Sol. Cells 10.1016/j.solmat.2004.06.016 87, 323 (2005).
-
(2005)
Sol. Energy Mater. Sol. Cells
, vol.87
, pp. 323
-
-
Tablero, C.1
Palacios, P.2
Fernández, J.3
Wahnón, P.4
-
10
-
-
33344468871
-
-
10.1103/PhysRevB.73.085206
-
P. Palacios, J. J. Fernández, K. Sanchez, J. C. Conesa, and P. Wahnon, Phys. Rev. B 10.1103/PhysRevB.73.085206 73, 085206 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 085206
-
-
Palacios, P.1
Fernández, J.J.2
Sanchez, K.3
Conesa, J.C.4
Wahnon, P.5
-
11
-
-
33750924799
-
-
10.1103/PhysRevB.74.195203
-
C. Tablero, Phys. Rev. B 10.1103/PhysRevB.74.195203 74, 195203 (2006).
-
(2006)
Phys. Rev. B
, vol.74
, pp. 195203
-
-
Tablero, C.1
-
13
-
-
25644452716
-
-
10.1063/1.2034447
-
C. Tablero, J. Chem. Phys. 10.1063/1.2034447 123, 114709 (2005).
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 114709
-
-
Tablero, C.1
-
16
-
-
0030205498
-
-
10.1143/JJAP.35.4401
-
P. Gibart, F. Auzel, J.-C. Guillaume, and K. Zahraman, Jpn. J. Appl. Phys., Part 1 10.1143/JJAP.35.4401 35, 4401 (1996).
-
(1996)
Jpn. J. Appl. Phys., Part 1
, vol.35
, pp. 4401
-
-
Gibart, P.1
Auzel, F.2
Guillaume, J.-C.3
Zahraman, K.4
-
21
-
-
41749093425
-
-
Proceedings of the Fourth WCPEC (IEEE 06CH37747), Waikoloa, HI
-
M. Y. Levy and C. Honsberg, Proceedings of the Fourth WCPEC (IEEE 06CH37747), Waikoloa, HI, 2006 (unpublished), pp. 71-74.
-
(2006)
, pp. 71-74
-
-
Levy, M.Y.1
Honsberg, C.2
-
22
-
-
0003443049
-
-
Prentice-Hall Electrical Engineering Series and Solid State Physical Electronics Series Vol. Prentice-Hall, Englewood Cliffs, NJ
-
J. I. Pankove, in Optical Processes in Semiconductors, Prentice-Hall Electrical Engineering Series and Solid State Physical Electronics Series Vol. 11 (Prentice-Hall, Englewood Cliffs, NJ, 1971), pp. 93-94.
-
(1971)
Optical Processes in Semiconductors
, vol.11
, pp. 93-94
-
-
Pankove, J.I.1
-
26
-
-
55449107293
-
-
Photoconductivity Conference, Atlantic City, NJ
-
P. Bardeen, F. Blatt, and L. H. Hall, Photoconductivity Conference, Atlantic City, NJ, 1954 (unpublished), p. 147.
-
(1954)
, pp. 147
-
-
Bardeen, P.1
Blatt, F.2
Hall, L.H.3
-
27
-
-
0003394384
-
-
30th ed., edited by D. Zwillinger (CRC, Boca Raton, FL
-
Standard Mathematical Tables and Formulae, 30th ed., edited by, D. Zwillinger, (CRC, Boca Raton, FL, 1996).
-
(1996)
Standard Mathematical Tables and Formulae
-
-
-
28
-
-
55449107591
-
-
Proceedings of the EUPVSEC 22, Milan, Italy
-
M. Y. Levy, N. J. Ekins-Daukes, and C. Honsberg, Proceedings of the EUPVSEC 22, Milan, Italy, 2007 (unpublished), pp. 432-435.
-
(2007)
, pp. 432-435
-
-
Levy, M.Y.1
Ekins-Daukes, N.J.2
Honsberg, C.3
-
32
-
-
85013720763
-
-
Elsevier, Boston
-
R. Winston, J. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, Boston, 2005), pp. 366-368.
-
(2005)
Nonimaging Optics
, pp. 366-368
-
-
Winston, R.1
Miñano, J.2
Benítez, P.3
-
36
-
-
55449134534
-
-
Please note that the efficiencies that the authors present here are first-law efficiencies that are given as the photovoltaic power density generated by the converter divided by the total-energy flux impinging on the converter. Resulting from this, the efficiencies for nonconcentrated (×1) solar illumination that are reported elsewhere in the literature may be roughly 1.3 times larger than those that are reported here (cf. efficiencies reported in Refs.). As explained in Ref., a second-law efficiency calculation that includes the energy flux from the Sun and that excludes the energy flux from the Earth will result in a distorted efficiency that is a factor [1+ (1-CD CD) (TE / TS) 4] larger than a calculation using the first-law efficiency that includes both. With respect to this factor, C and D are the geometric concentration and dilution factors, respectively, and TE and TS are the surface terrestrial and solar temperatures, respectively.
-
Please note that the efficiencies that the authors present here are first-law efficiencies that are given as the photovoltaic power density generated by the converter divided by the total-energy flux impinging on the converter. Resulting from this, the efficiencies for nonconcentrated (×1) solar illumination that are reported elsewhere in the literature may be roughly 1.3 times larger than those that are reported here (cf. efficiencies reported in Refs.). As explained in Ref., a second-law efficiency calculation that includes the energy flux from the Sun and that excludes the energy flux from the Earth will result in a distorted efficiency that is a factor [1+ (1-CD CD) (TE / TS) 4] larger than a calculation using the first-law efficiency that includes both. With respect to this factor, C and D are the geometric concentration and dilution factors, respectively, and TE and TS are the surface terrestrial and solar temperatures, respectively. The smaller the concentration factor is, the more pronounced is the distortion. For example, allowing that D=2.16× 10-5, C=1, TE =300 K, and TS =6000 K, then the distortion is given by a factor of 1+ (4.63× 104) (6.25× 10-6) =1.29.
-
-
-
|