-
1
-
-
47749089079
-
On the number of support points of maximin and Bayesian optimal designs
-
Braess, D. and Dette, H. (2007). On the number of support points of maximin and Bayesian optimal designs. Ann. Statist. 35, 772-792.
-
(2007)
Ann. Statist
, vol.35
, pp. 772-792
-
-
Braess, D.1
Dette, H.2
-
2
-
-
84972528615
-
Bayesian experimental design: A review
-
Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: a review. Statist. Sci. 10, 273-304.
-
(1995)
Statist. Sci
, vol.10
, pp. 273-304
-
-
Chaloner, K.1
Verdinelli, I.2
-
3
-
-
0003363041
-
A Practical Guide to Splines
-
Springer-Verlag, New York-Heidelberg-Berlin
-
De Boor, C. (1978). A Practical Guide to Splines. Applied Mathematical Sciences, Vol. 27, Springer-Verlag, New York-Heidelberg-Berlin.
-
(1978)
Applied Mathematical Sciences
, vol.27
-
-
De Boor, C.1
-
4
-
-
0002487793
-
Designing experiments with respect to 'standardized' optimality criteria
-
Dette, H. (1997). Designing experiments with respect to 'standardized' optimality criteria. J. Roy. Statist. Soc. Ser. B 59, 97-110.
-
(1997)
J. Roy. Statist. Soc. Ser. B
, vol.59
, pp. 97-110
-
-
Dette, H.1
-
7
-
-
84950655372
-
Fitting segmented polynomial regression models whose join points have to be estimated
-
Gallant, A. R. and Fuller, W. A. (1973). Fitting segmented polynomial regression models whose join points have to be estimated. J. Amer. Statist. Soc. 68, 144-147.
-
(1973)
J. Amer. Statist. Soc
, vol.68
, pp. 144-147
-
-
Gallant, A.R.1
Fuller, W.A.2
-
8
-
-
84919102610
-
The modified Gauss-Newton method for the fitting of nonlinear regression functions by least squares
-
Hartley, H. O. (1961). The modified Gauss-Newton method for the fitting of nonlinear regression functions by least squares. Technometrics 3, 269-280.
-
(1961)
Technometrics
, vol.3
, pp. 269-280
-
-
Hartley, H.O.1
-
9
-
-
0007329968
-
E-optimal designs for polynomial spline regression
-
Heiligers, B. (1998). E-optimal designs for polynomial spline regression. J. Statist. Plann. Inference 75, 159-172.
-
(1998)
J. Statist. Plann. Inference
, vol.75
, pp. 159-172
-
-
Heiligers, B.1
-
10
-
-
0001619680
-
Efficiency problems in polynomial estimation
-
Hoel, P. G. (1958) Efficiency problems in polynomial estimation. Ann. Math. Statist. 29, 1134-1145.
-
(1958)
Ann. Math. Statist
, vol.29
, pp. 1134-1145
-
-
Hoel, P.G.1
-
11
-
-
0035618158
-
Maximin designs for exponential growth models and heteroscedastic polynomial models
-
Imhof, L. A. (2001). Maximin designs for exponential growth models and heteroscedastic polynomial models. Ann. Statist. 29, 561-576.
-
(2001)
Ann. Statist
, vol.29
, pp. 561-576
-
-
Imhof, L.A.1
-
12
-
-
33747818869
-
Approximation to data by splines with free knots
-
Jupp, D. L. B. (1978). Approximation to data by splines with free knots. SIAM J. Numer. Anal. 15, 328-343.
-
(1978)
SIAM J. Numer. Anal
, vol.15
, pp. 328-343
-
-
Jupp, D.L.B.1
-
13
-
-
38249022328
-
Optimal experimental designs for the B-spline regression
-
Kaishev, V. K. (1989). Optimal experimental designs for the B-spline regression. Comput. Statist. Data Anal. 8, 39-47.
-
(1989)
Comput. Statist. Data Anal
, vol.8
, pp. 39-47
-
-
Kaishev, V.K.1
-
14
-
-
0003210489
-
Tchebycheff Systems: With Applications in Analysis and Statistics
-
New York
-
Karlin, S. and Studden, W. J. (1966). Tchebycheff Systems: with Applications in Analysis and Statistics. Interscience, New York.
-
(1966)
Interscience
-
-
Karlin, S.1
Studden, W.J.2
-
15
-
-
0000981128
-
General equivalence theory for optimum designs (approximate theory)
-
Kiefer, J. C. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2, 849-879.
-
(1974)
Ann. Statist
, vol.2
, pp. 849-879
-
-
Kiefer, J.C.1
-
16
-
-
0001112787
-
The equivalence of two extremum problems
-
Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum problems. Canad. J. Statist. 12, 363-366.
-
(1960)
Canad. J. Statist
, vol.12
, pp. 363-366
-
-
Kiefer, J.1
Wolfowitz, J.2
-
17
-
-
0040959235
-
D-optimal designs in polynomial spline regression
-
Lim, Y. B. (1991). D-optimal designs in polynomial spline regression. Korean J. Appl. Statist. 4, 171-178.
-
(1991)
Korean J. Appl. Statist
, vol.4
, pp. 171-178
-
-
Lim, Y.B.1
-
18
-
-
0242719920
-
-
Mao, W. and Zhao, L. H. (2003). Free-knot polynomial splines with confidence intervals. J. Roy. Statist. Soc. 65, 901-919. 132, 93-116.
-
Mao, W. and Zhao, L. H. (2003). Free-knot polynomial splines with confidence intervals. J. Roy. Statist. Soc. 65, 901-919. 132, 93-116.
-
-
-
-
20
-
-
0010911410
-
Maximin efficient designs for estimating nonlinear aspects in linear models
-
Müller, Ch. H. (1995). Maximin efficient designs for estimating nonlinear aspects in linear models. J. Statist. Plann. Inference 44, 117-132.
-
(1995)
J. Statist. Plann. Inference
, vol.44
, pp. 117-132
-
-
Müller, C.H.1
-
21
-
-
0007258949
-
Optimal designs with a Tchebycheffian spline regression function
-
Murty, V. N. (1971). Optimal designs with a Tchebycheffian spline regression function. Ann. Math. Statist. 42, 643-649.
-
(1971)
Ann. Math. Statist
, vol.42
, pp. 643-649
-
-
Murty, V.N.1
-
22
-
-
0017972682
-
Experimental designs for fitting segmented polynomial regression models
-
Park, S. H. (1978). Experimental designs for fitting segmented polynomial regression models. Technometrics 20, 151-154.
-
(1978)
Technometrics
, vol.20
, pp. 151-154
-
-
Park, S.H.1
-
23
-
-
0036400154
-
Optimal design of nonlinear experiments with parameter constraints
-
Pazman, A. (2002). Optimal design of nonlinear experiments with parameter constraints. Metrika 56, 113-130.
-
(2002)
Metrika
, vol.56
, pp. 113-130
-
-
Pazman, A.1
-
25
-
-
0001355083
-
Efficient rounding of approximate designs
-
Pukelsheim, F. and Rieder, S. (1992). Efficient rounding of approximate designs. Biometrika 79, 763-770.
-
(1992)
Biometrika
, vol.79
, pp. 763-770
-
-
Pukelsheim, F.1
Rieder, S.2
-
26
-
-
34250516079
-
Smoothing by spline functions
-
Reinsch, C. (1967). Smoothing by spline functions. Numer. Math. 10, 177-183.
-
(1967)
Numer. Math
, vol.10
, pp. 177-183
-
-
Reinsch, C.1
-
27
-
-
0001426609
-
Spline functions and the problem of graduation
-
Schoenberg, I. J. (1964). Spline functions and the problem of graduation. Proc. Nat. Acad. Sci. 52, 947-950.
-
(1964)
Proc. Nat. Acad. Sci
, vol.52
, pp. 947-950
-
-
Schoenberg, I.J.1
-
30
-
-
0039180545
-
Optimal designs and spline regression. Optimizing Meth. Statist
-
Ohio State Univ
-
Studden, W. J. (1971). Optimal designs and spline regression. Optimizing Meth. Statist., Proc. Sympos. Ohio State Univ.
-
(1971)
Proc. Sympos
-
-
Studden, W.J.1
-
31
-
-
0040959311
-
Admissible designs for polynomial spline regression
-
Studden, W. J. and VanArman, D. J. (1969). Admissible designs for polynomial spline regression. Ann. Math. Statist. 40, 1557-1569.
-
(1969)
Ann. Math. Statist
, vol.40
, pp. 1557-1569
-
-
Studden, W.J.1
VanArman, D.J.2
-
32
-
-
84975992278
-
On a new method of graduation
-
Wittaker, E. T. (1923). On a new method of graduation. Proc. Edinburgh. Math. Soc. 41, 63-75.
-
(1923)
Proc. Edinburgh. Math. Soc
, vol.41
, pp. 63-75
-
-
Wittaker, E.T.1
-
33
-
-
27144485770
-
Designing experiments under random contamination with applications to polynomial spline regression
-
Woods, D. (2005). Designing experiments under random contamination with applications to polynomial spline regression. Statist. Sinica 15, 619-633
-
(2005)
Statist. Sinica
, vol.15
, pp. 619-633
-
-
Woods, D.1
-
34
-
-
33645022074
-
All-bias designs for polynomial spline regression models
-
Woods, D. and Lewis, S. (2006). All-bias designs for polynomial spline regression models. Austral. N. Z. J. Statist. 48, 49-58.
-
(2006)
Austral. N. Z. J. Statist
, vol.48
, pp. 49-58
-
-
Woods, D.1
Lewis, S.2
|