-
1
-
-
84973944249
-
Latent roots of tri-diagonal matrices
-
ARSCOTT, F. M. (1961). Latent roots of tri-diagonal matrices. Proc. Edinburgh Math. Soc. (2) 12 5-7.
-
(1961)
Proc. Edinburgh Math. Soc. (2)
, vol.12
, pp. 5-7
-
-
Arscott, F.M.1
-
2
-
-
38249001247
-
A note on optimal Bayesian design for nonlinear problems
-
CHALONER, K. (1993). A note on optimal Bayesian design for nonlinear problems. J. Statist. Plann. Inference 37 229-235.
-
(1993)
J. Statist. Plann. Inference
, vol.37
, pp. 229-235
-
-
Chaloner, K.1
-
3
-
-
0031571408
-
D-optimal designs for weighted polynomial regression
-
CHANG, F.-C. and LIN, G.-C. (1997). D-optimal designs for weighted polynomial regression. J. Statist. Plann. Inference 62 317-331.
-
(1997)
J. Statist. Plann. Inference
, vol.62
, pp. 317-331
-
-
Chang, F.-C.1
Lin, G.-C.2
-
4
-
-
0001653224
-
Locally optimal designs for estimating parameters
-
CHERNOFF, H. (1953). Locally optimal designs for estimating parameters. Ann. Math. Statist. 24 586-602.
-
(1953)
Ann. Math. Statist.
, vol.24
, pp. 586-602
-
-
Chernoff, H.1
-
5
-
-
0002487793
-
Designing experiments with respect to 'standardized' optimality criteria
-
DETTE, H. (1997). Designing experiments with respect to 'standardized' optimality criteria. J. Roy. Statist. Soc. Ser. B 59 97-110.
-
(1997)
J. Roy. Statist. Soc. Ser. B
, vol.59
, pp. 97-110
-
-
Dette, H.1
-
6
-
-
0030167511
-
Bayesian optimal one point designs for one parameter nonlinear models
-
DETTE, H. and NEUGEBAUER, H.-M. (1996). Bayesian optimal one point designs for one parameter nonlinear models. J. Statist. Plann. Inference 52 17-31.
-
(1996)
J. Statist. Plann. Inference
, vol.52
, pp. 17-31
-
-
Dette, H.1
Neugebauer, H.-M.2
-
7
-
-
0031570184
-
Bayesian D-optimal designs for exponential regression models
-
DETTE, H. and NEUGEBAUER, H.-M. (1997). Bayesian D-optimal designs for exponential regression models. J. Statist. Plann. Inference 60 331-349.
-
(1997)
J. Statist. Plann. Inference
, vol.60
, pp. 331-349
-
-
Dette, H.1
Neugebauer, H.-M.2
-
8
-
-
0038864482
-
A note on Bayesian D-optimal designs for a generalization of the exponential growth model
-
DETTE, H. and SPERLICH, S. (1994). A note on Bayesian D-optimal designs for a generalization of the exponential growth model. South African Statist. J. 28 103-117.
-
(1994)
South African Statist. J.
, vol.28
, pp. 103-117
-
-
Dette, H.1
Sperlich, S.2
-
9
-
-
0030350546
-
Optimal Bayesian designs for models with partially specified heteroscedastic structure
-
DETTE, H. and WONG, W. K. (1996). Optimal Bayesian designs for models with partially specified heteroscedastic structure. Ann. Statist. 24 2108-2127.
-
(1996)
Ann. Statist.
, vol.24
, pp. 2108-2127
-
-
Dette, H.1
Wong, W.K.2
-
10
-
-
0000376239
-
Bayesian D-optimal designs on a fixed number of design points for heteroscedastic polynomial models
-
DETTE, H. and WONG, W. K. (1998). Bayesian D-optimal designs on a fixed number of design points for heteroscedastic polynomial models. Biometrika 85 869-882.
-
(1998)
Biometrika
, vol.85
, pp. 869-882
-
-
Dette, H.1
Wong, W.K.2
-
11
-
-
0024606752
-
Recent advances in nonlinear experimental design
-
FORD, I., TITTERINGTON, D. M. and KITSOS, C. P. (1989). Recent advances in nonlinear experimental design. Technometrics 31 49-60.
-
(1989)
Technometrics
, vol.31
, pp. 49-60
-
-
Ford, I.1
Titterington, D.M.2
Kitsos, C.P.3
-
12
-
-
0000631549
-
A geometric approach to optimal design for one-parameter non-linear models
-
HAINES, L. M. (1995). A geometric approach to optimal design for one-parameter non-linear models. J. Roy. Statist. Soc. Ser. B 57 575-598.
-
(1995)
J. Roy. Statist. Soc. Ser. B
, vol.57
, pp. 575-598
-
-
Haines, L.M.1
-
13
-
-
0000615117
-
D-optimal designs for polynomial regression without an intercept
-
HUANG, M.-N. L., CHANG, F.-C. and WONG, W. K. (1995). D-optimal designs for polynomial regression without an intercept. Statist. Sinica 5 441-458.
-
(1995)
Statist. Sinica
, vol.5
, pp. 441-458
-
-
Huang, M.-N.L.1
Chang, F.-C.2
Wong, W.K.3
-
14
-
-
0034021940
-
A graphical method for finding maximin efficiency designs
-
IMHOF, L. and WONG, W. K. (2000). A graphical method for finding maximin efficiency designs. Biometrics 56 113-117.
-
(2000)
Biometrics
, vol.56
, pp. 113-117
-
-
Imhof, L.1
Wong, W.K.2
-
16
-
-
0000852422
-
Bayesian D-optimal designs for the exponential growth model
-
MUKHOPADHYAY, S. and HAINES, L. M. (1995). Bayesian D-optimal designs for the exponential growth model. J. Statist. Plann. Inference 44 385-397.
-
(1995)
J. Statist. Plann. Inference
, vol.44
, pp. 385-397
-
-
Mukhopadhyay, S.1
Haines, L.M.2
-
18
-
-
0024032016
-
Robust experiment design via maximin optimization
-
PRONZATO, L. and WALTER, E. (1988). Robust experiment design via maximin optimization. Math. Biosci. 89 161-176.
-
(1988)
Math. Biosci.
, vol.89
, pp. 161-176
-
-
Pronzato, L.1
Walter, E.2
-
20
-
-
0039990368
-
Discussion of "constrained optimization of experimental design,"
-
D. Cook and V. Fedorov
-
PUKELSHEIM, F. and WILHELM, A. (1995). Discussion of "Constrained optimization of experimental design," by D. Cook and V. Fedorov. Statistics 26 168-172.
-
(1995)
Statistics
, vol.26
, pp. 168-172
-
-
Pukelsheim, F.1
Wilhelm, A.2
-
25
-
-
0004183064
-
-
Chapman and Hall, London
-
SILVEY, S. D. (1980). Optimal Design. Chapman and Hall, London.
-
(1980)
Optimal Design
-
-
Silvey, S.D.1
-
28
-
-
0001328961
-
A unified approach to the construction of minimax designs
-
WONG, W. K. (1992). A unified approach to the construction of minimax designs. Biometrika 79 611-619.
-
(1992)
Biometrika
, vol.79
, pp. 611-619
-
-
Wong, W.K.1
|