메뉴 건너뛰기




Volumn 129, Issue 16, 2008, Pages

The roles of electronic exchange and correlation in charge-transfer-to- solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase

Author keywords

[No Author keywords available]

Indexed keywords

ABSORPTION; ABSORPTION SPECTROSCOPY; ATOMIC PHYSICS; ATOMS; CHARGE TRANSFER; DYNAMICS; ELECTRIC EXCITATION; ELECTRIC FIELDS; ELECTROMAGNETIC WAVE ABSORPTION; ELECTRONIC PROPERTIES; ELECTRONIC STRUCTURE; ENERGY ABSORPTION; EQUATIONS OF MOTION; EXCITED STATES; ION EXCHANGE; IONS; LIGHT ABSORPTION; MASS TRANSFER; MECHANICS; MOLECULAR DYNAMICS; MOLECULAR MECHANICS; NANOFLUIDICS; NEGATIVE IONS; PLASMA DIAGNOSTICS; QUANTUM CHEMISTRY; REACTION KINETICS; RELAXATION PROCESSES; SEMICONDUCTOR QUANTUM DOTS; SOLVATION; SOLVENTS; SPECTRUM ANALYSIS;

EID: 55349128516     PISSN: 00219606     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.2996350     Document Type: Article
Times cited : (28)

References (91)
  • 4
    • 33751123069 scopus 로고    scopus 로고
    • 0022-3654 10.1021/jp9513531.
    • W. S. Sheu and P. J. Rossky, J. Phys. Chem. 0022-3654 10.1021/jp9513531 100, 1295 (1996).
    • (1996) J. Phys. Chem. , vol.100 , pp. 1295
    • Sheu, W.S.1    Rossky, P.J.2
  • 16
    • 43949100668 scopus 로고    scopus 로고
    • 0066-426X 10.1146/annurev.physchem.58.032806.104702.
    • X. Chen and S. Bradforth, Annu. Rev. Phys. Chem. 0066-426X 10.1146/annurev.physchem.58.032806.104702 59, 203 (2008).
    • (2008) Annu. Rev. Phys. Chem. , vol.59 , pp. 203
    • Chen, X.1    Bradforth, S.2
  • 23
    • 0037014748 scopus 로고    scopus 로고
    • 0009-2614 10.1016/S0009-2614(02)00771-6.
    • I. B. Martini and B. J. Schwartz, Chem. Phys. Lett. 0009-2614 10.1016/S0009-2614(02)00771-6 360, 22 (2002).
    • (2002) Chem. Phys. Lett. , vol.360 , pp. 22
    • Martini, I.B.1    Schwartz, B.J.2
  • 25
    • 0038204282 scopus 로고    scopus 로고
    • 0009-2614 10.1016/S0009-2614(03)00922-9.
    • E. R. Barthel and B. J. Schwartz, Chem. Phys. Lett. 0009-2614 10.1016/S0009-2614(03)00922-9 375, 435 (2003).
    • (2003) Chem. Phys. Lett. , vol.375 , pp. 435
    • Barthel, E.R.1    Schwartz, B.J.2
  • 26
    • 0037731311 scopus 로고    scopus 로고
    • in, edited by M. Murnane, N. Scherer, R. J. D. Miller, and A. M. Weiner (Springer-Verlag, Berlin)
    • E. R. Barthel, I. B. Martini, E. Keszei, and B. J. Schwartz, in Ultrafast Phenomena XIII, edited by, M. Murnane, N. Scherer, R. J. D. Miller, and, A. M. Weiner, (Springer-Verlag, Berlin, 2003), pp. 459-461.
    • (2003) Ultrafast Phenomena XIII , pp. 459-461
    • Barthel, E.R.1    Martini, I.B.2    Keszei, E.3    Schwartz, B.J.4
  • 27
    • 0037730469 scopus 로고    scopus 로고
    • in, edited by M. Murnane, N. Scherer, R. J. D. Miller, and A. M. Weiner (Springer-Verlag, Berlin)
    • I. B. Martini, E. R. Barthel, and B. J. Schwartz, in Ultrafast Phenomena XIII, edited by, M. Murnane, N. Scherer, R. J. D. Miller, and, A. M. Weiner, (Springer-Verlag, Berlin, 2003), pp. 487-489.
    • (2003) Ultrafast Phenomena XIII , pp. 487-489
    • Martini, I.B.1    Barthel, E.R.2    Schwartz, B.J.3
  • 32
  • 36
    • 49149085292 scopus 로고    scopus 로고
    • 0021-9606 10.1063/1.2946701.
    • O. Shoshanim and S. Ruhman, J. Chem. Phys. 0021-9606 10.1063/1.2946701 129, 044502 (2008).
    • (2008) J. Chem. Phys. , vol.129 , pp. 044502
    • Shoshanim, O.1    Ruhman, S.2
  • 39
    • 25544467658 scopus 로고
    • 0009-2614 10.1016/0009-2614(93)85263-N.
    • W. S. Sheu and P. J. Rossky, Chem. Phys. Lett. 0009-2614 10.1016/0009-2614(93)85263-N 202, 186 (1993).
    • (1993) Chem. Phys. Lett. , vol.202 , pp. 186
    • Sheu, W.S.1    Rossky, P.J.2
  • 40
    • 4243307511 scopus 로고
    • 0009-2614 10.1016/0009-2614(93)85125-8.
    • W. S. Sheu and P. J. Rossky, Chem. Phys. Lett. 0009-2614 10.1016/0009-2614(93)85125-8 213, 233 (1993).
    • (1993) Chem. Phys. Lett. , vol.213 , pp. 233
    • Sheu, W.S.1    Rossky, P.J.2
  • 41
    • 10044248290 scopus 로고
    • 0002-7863 10.1021/ja00070a017.
    • W. S. Sheu and P. J. Rossky, J. Am. Chem. Soc. 0002-7863 10.1021/ja00070a017 115, 7729 (1993).
    • (1993) J. Am. Chem. Soc. , vol.115 , pp. 7729
    • Sheu, W.S.1    Rossky, P.J.2
  • 42
    • 11644266170 scopus 로고
    • 0009-2614 10.1016/0009-2614(94)01185-0.
    • D. Borgis and A. Staib, Chem. Phys. Lett. 0009-2614 10.1016/0009-2614(94) 01185-0 230, 405 (1994).
    • (1994) Chem. Phys. Lett. , vol.230 , pp. 405
    • Borgis, D.1    Staib, A.2
  • 43
    • 3142727164 scopus 로고    scopus 로고
    • 0021-9606 10.1063/1.471635.
    • A. Staib and D. Borgis, J. Chem. Phys. 0021-9606 10.1063/1.471635 104, 9027 (1996).
    • (1996) J. Chem. Phys. , vol.104 , pp. 9027
    • Staib, A.1    Borgis, D.2
  • 44
    • 11744293431 scopus 로고    scopus 로고
    • 0021-9606 10.1063/1.471171.
    • D. Borgis and A. Staib, J. Chem. Phys. 0021-9606 10.1063/1.471171 104, 4776 (1996).
    • (1996) J. Chem. Phys. , vol.104 , pp. 4776
    • Borgis, D.1    Staib, A.2
  • 45
  • 48
  • 52
  • 57
    • 0001251663 scopus 로고
    • 0163-1829 10.1103/PhysRevB.31.2643.
    • K. Toukan and A. Rahman, Phys. Rev. B 0163-1829 10.1103/PhysRevB.31.2643 31, 2643 (1985).
    • (1985) Phys. Rev. B , vol.31 , pp. 2643
    • Toukan, K.1    Rahman, A.2
  • 59
    • 0000216452 scopus 로고
    • 0026-8976 10.1080/00268978200100281.
    • O. Steinhauser, Mol. Phys. 0026-8976 10.1080/00268978200100281 45, 335 (1982).
    • (1982) Mol. Phys. , vol.45 , pp. 335
    • Steinhauser, O.1
  • 60
    • 55349133896 scopus 로고    scopus 로고
    • The errors associated with truncating the long-range Coulomb interactions in our simulation were somewhat reduced by adopting a group-based cutoff scheme so that the longest ranged interactions were charge-dipole interactions. Although there exist better methods to treat long-range interactions in MD simulations, e.g., the Ewald summation (Ref.) we decided to use this simpler cutoff approach to allow for direct comparison to the 1EM sodide (Ref.) and dielectron simulations (Ref.), which also used the simple truncation scheme.
    • The errors associated with truncating the long-range Coulomb interactions in our simulation were somewhat reduced by adopting a group-based cutoff scheme so that the longest ranged interactions were charge-dipole interactions. Although there exist better methods to treat long-range interactions in MD simulations, e.g., the Ewald summation (Ref.) we decided to use this simpler cutoff approach to allow for direct comparison to the 1EM sodide (Ref.) and dielectron simulations (Ref.), which also used the simple truncation scheme.
  • 63
  • 65
    • 55349085517 scopus 로고    scopus 로고
    • The experimental electron affinity of a sodium cation is 0.188 857 6 hartree [, 88th ed., edited by D. R. Lide (CRC/Taylor and Francis, Boca Raton)] the difference between this value and the negative of the frozen-core HF eigenvalue is due mainly to electron correlation between the valence and core electrons being neglected in the frozen core approximation [see, J. Chem. Phys. 0021-9606 10.1063/1.447083, (1984)].
    • The experimental electron affinity of a sodium cation is 0.188 857 6 hartree [CRC Handbook of Chemistry and Physics, 88th ed., edited by, D. R. Lide, (CRC/Taylor and Francis, Boca Raton, 2008)] the difference between this value and the negative of the frozen-core HF eigenvalue is due mainly to electron correlation between the valence and core electrons being neglected in the frozen core approximation [see W. Müller, J. Flesch, and W. Meyer, J. Chem. Phys. 0021-9606 10.1063/1.447083 80, 3297 (1984)].
    • (2008) CRC Handbook of Chemistry and Physics , vol.80 , pp. 3297
    • Müller, W.1    Flesch, J.2    Meyer, W.3
  • 68
    • 55349130058 scopus 로고    scopus 로고
    • The reason for our choice of single-electron adiabatic states over other possible bases, e.g., HF orbitals, is that these adiabatic states are easy to generate by diagonalizing a one-electron Hamiltonian: No self-consistent iterations are required. Furthermore, the excited-state HF orbitals (virtuals) are often unbound and are thus a poor representation of the lowest-lying many-electron excited-state wave functions, so that a large number of these states are required to form an adequate product basis. Our choice of the single-electron adiabatic product basis gives many bound higher-lying basis states, providing greater flexibility to simultaneously represent both the many-electron ground and lowest excited states.
    • The reason for our choice of single-electron adiabatic states over other possible bases, e.g., HF orbitals, is that these adiabatic states are easy to generate by diagonalizing a one-electron Hamiltonian: No self-consistent iterations are required. Furthermore, the excited-state HF orbitals (virtuals) are often unbound and are thus a poor representation of the lowest-lying many-electron excited-state wave functions, so that a large number of these states are required to form an adequate product basis. Our choice of the single-electron adiabatic product basis gives many bound higher-lying basis states, providing greater flexibility to simultaneously represent both the many-electron ground and lowest excited states.
  • 69
    • 55349116809 scopus 로고    scopus 로고
    • The mean potential energy of the dielectron-water interaction was calculated from the mean values of the dielectron total and kinetic energy and the electron-electron interaction energy as reported in Ref., which is why the uncertainty in this value is unknown.
    • The mean potential energy of the dielectron-water interaction was calculated from the mean values of the dielectron total and kinetic energy and the electron-electron interaction energy as reported in Ref., which is why the uncertainty in this value is unknown.
  • 70
    • 55349098902 scopus 로고    scopus 로고
    • We note that the lower states also could have substantial many-electron character in the form of radial correlation, although we have not probed this in our analysis.
    • We note that the lower states also could have substantial many-electron character in the form of radial correlation, although we have not probed this in our analysis.
  • 71
    • 55349133124 scopus 로고    scopus 로고
    • A gas-phase calculation of sodide's electronic structure with our two-electron model reveals that the ground state has 9% pcharacter.
    • A gas-phase calculation of sodide's electronic structure with our two-electron model reveals that the ground state has 9% pp character.
  • 74
    • 0347051645 scopus 로고    scopus 로고
    • 0021-9606 10.1063/1.1624362.
    • J. Heuft and E. Meijer, J. Chem. Phys. 0021-9606 10.1063/1.1624362 119, 11788 (2003).
    • (2003) J. Chem. Phys. , vol.119 , pp. 11788
    • Heuft, J.1    Meijer, E.2
  • 75
    • 22944454513 scopus 로고    scopus 로고
    • 0021-9606 10.1063/1.1853352.
    • J. Heuft and E. Meijer, J. Chem. Phys. 0021-9606 10.1063/1.1853352 122, 094501 (2005).
    • (2005) J. Chem. Phys. , vol.122 , pp. 094501
    • Heuft, J.1    Meijer, E.2
  • 76
    • 33745458896 scopus 로고    scopus 로고
    • 0021-9606 10.1063/1.2013209.
    • J. Heuft and E. Meijer, J. Chem. Phys. 0021-9606 10.1063/1.2013209 123, 094506 (2005).
    • (2005) J. Chem. Phys. , vol.123 , pp. 094506
    • Heuft, J.1    Meijer, E.2
  • 79
    • 55349116150 scopus 로고    scopus 로고
    • The dipole moment of a charged species depends on the origin of the coordinate system, which for sodide we took to be r Na+.
    • The dipole moment of a charged species depends on the origin of the coordinate system, which for sodide we took to be r Na+.
  • 80
    • 4243434651 scopus 로고
    • 0031-9007 10.1103/PhysRevLett.57.782.
    • D. Logan, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.57.782 57, 782 (1986).
    • (1986) Phys. Rev. Lett. , vol.57 , pp. 782
    • Logan, D.1
  • 84
    • 55349090737 scopus 로고    scopus 로고
    • An empirical estimate of the solution-phase polarizability of sodide has been previously reported as 430 a03 by Pyper and Edwards (Ref.). This estimate is considerably larger than our calculated polarizability of 169±4 a03, and is based on the assumption that changes in sodide's polarizability between different phases are the same as for the iodide ion. We believe that this assumption is not valid given the very different electronic structure of iodide and sodide.
    • An empirical estimate of the solution-phase polarizability of sodide has been previously reported as 430 a03 by Pyper and Edwards (Ref.). This estimate is considerably larger than our calculated polarizability of 169±4 a03, and is based on the assumption that changes in sodide's polarizability between different phases are the same as for the iodide ion. We believe that this assumption is not valid given the very different electronic structure of iodide and sodide.
  • 85
    • 33845292608 scopus 로고    scopus 로고
    • 0021-9606 10.1063/1.2393225.
    • C. Lupinetti and A. Thakkar, J. Chem. Phys. 0021-9606 10.1063/1.2393225 125, 194317 (2006).
    • (2006) J. Chem. Phys. , vol.125 , pp. 194317
    • Lupinetti, C.1    Thakkar, A.2
  • 86
    • 55349144243 scopus 로고    scopus 로고
    • We chose to integrate the charge density uto 3.6 Å since we found empirically that this gave the most contrast between instances when both electrons were attached to the sodium core (Z≈-1) and when one electron was detached (Z≈0).
    • We chose to integrate the charge density up to 3.6 Å since we found empirically that this gave the most contrast between instances when both electrons were attached to the sodium core (Z≈-1) and when one electron was detached (Z≈0).
  • 91
    • 55349121929 scopus 로고    scopus 로고
    • The standard deviations in Table were calculated by computing the root-mean-square deviation and dividing by the square root of the number of independent samples, which was taken to be the length of the run divided by the estimated decorrelation time of the listed property (roughly 0.2 ps).
    • The standard deviations in Table were calculated by computing the root-mean-square deviation and dividing by the square root of the number of independent samples, which was taken to be the length of the run divided by the estimated decorrelation time of the listed property (roughly 0.2 ps).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.