메뉴 건너뛰기




Volumn 11, Issue 5, 2008, Pages 431-443

Using temperature and state transitions to forecast wind speed

Author keywords

Forecasting; Non linear variability; Statistical models; Wind speed

Indexed keywords

FORECASTING; PROBABILITY DISTRIBUTIONS; SPEED; WIND POWER;

EID: 55349126757     PISSN: 10954244     EISSN: 10991824     Source Type: Journal    
DOI: 10.1002/we.263     Document Type: Article
Times cited : (16)

References (44)
  • 3
    • 21144473917 scopus 로고
    • Joint estimation of model parameters and outlier effects in time series
    • Chen C, Liu LM. Joint estimation of model parameters and outlier effects in time series. Journal of the American Statistical Association 1993; 88: 284-297.
    • (1993) Journal of the American Statistical Association , vol.88 , pp. 284-297
    • Chen, C.1    Liu, L.M.2
  • 4
    • 0003108131 scopus 로고
    • Forecasting time series with outliers
    • Chen C, Liu LM. Forecasting time series with outliers. Journal of Forecasting 1993; 12: 13-35.
    • (1993) Journal of Forecasting , vol.12 , pp. 13-35
    • Chen, C.1    Liu, L.M.2
  • 5
    • 84979455306 scopus 로고
    • Some advances in nonlinear and adaptive modeling in time series
    • Tiao GC, Tsay RS. Some advances in nonlinear and adaptive modeling in time series. Journal of Forecasting 1994; 13: 109-131.
    • (1994) Journal of Forecasting , vol.13 , pp. 109-131
    • Tiao, G.C.1    Tsay, R.S.2
  • 6
    • 0000875323 scopus 로고
    • Time series model specification in the presence of outliers
    • Tsay R. Time series model specification in the presence of outliers. Journal of the American Statistical Association 1986; 81: 132-141.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 132-141
    • Tsay, R.1
  • 7
    • 84944452417 scopus 로고
    • Outliers, level shifts and variance changes in time series
    • Tsay R. Outliers, level shifts and variance changes in time series. Journal of Forecasting 1988; 7: 1-20.
    • (1988) Journal of Forecasting , vol.7 , pp. 1-20
    • Tsay, R.1
  • 11
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied lo mean hourly wind speed time series
    • Sfetsos A. A comparison of various forecasting techniques applied lo mean hourly wind speed time series. Renewable Energy 2000; 21: 25-35.
    • (2000) Renewable Energy , vol.21 , pp. 25-35
    • Sfetsos, A.1
  • 13
    • 0028254910 scopus 로고
    • A class of stochastic models for relating synoplic atmospheric patterns to regional hydrologic phenomena
    • Hughes JP, Guttorp P. A class of stochastic models for relating synoplic atmospheric patterns to regional hydrologic phenomena. Water Resources Research 1994; 30: 1535-1546.
    • (1994) Water Resources Research , vol.30 , pp. 1535-1546
    • Hughes, J.P.1    Guttorp, P.2
  • 14
    • 0033480863 scopus 로고    scopus 로고
    • A non-homogeneous hidden Markov model for precipitation occurrence
    • Hughes JP, Guttorp P, Charles SP. A non-homogeneous hidden Markov model for precipitation occurrence. Applied Statistics 1999; 48: 15-30.
    • (1999) Applied Statistics , vol.48 , pp. 15-30
    • Hughes, J.P.1    Guttorp, P.2    Charles, S.P.3
  • 15
    • 0027101552 scopus 로고
    • Space-time models for daily rainfall using atmospheric circulation patterns
    • Bardossy A, Plate EJ. Space-time models for daily rainfall using atmospheric circulation patterns. Water Resources Research 1992; 28: 1247-1259.
    • (1992) Water Resources Research , vol.28 , pp. 1247-1259
    • Bardossy, A.1    Plate, E.J.2
  • 16
    • 0036553271 scopus 로고    scopus 로고
    • Initial results of a mesoscale short-range forecasting system over the Pacific Northwest
    • Grimit EP, Mass CF. Initial results of a mesoscale short-range forecasting system over the Pacific Northwest. Weather and Forecasting 2002; 17: 192-205.
    • (2002) Weather and Forecasting , vol.17 , pp. 192-205
    • Grimit, E.P.1    Mass, C.F.2
  • 17
    • 4944237404 scopus 로고    scopus 로고
    • Calibrated probabilistic mesoscale weather field forecasting: The geostatistical output perturbation method
    • Gel Y, Raftery AE, Gneiting T. Calibrated probabilistic mesoscale weather field forecasting: the geostatistical output perturbation method. Journal of the American Statistical Association 2004; 99: 575-583.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 575-583
    • Gel, Y.1    Raftery, A.E.2    Gneiting, T.3
  • 18
    • 0036612028 scopus 로고    scopus 로고
    • Evaluating probabilistic forecasts using information theory
    • Roulston MS, Smith LA. Evaluating probabilistic forecasts using information theory. Monthly Weather Review 2002; 130: 1653-1660.
    • (2002) Monthly Weather Review , vol.130 , pp. 1653-1660
    • Roulston, M.S.1    Smith, L.A.2
  • 19
    • 14344255817 scopus 로고    scopus 로고
    • Probabilistic wind power forecasts using local quantile regression
    • Bremnes JB. Probabilistic wind power forecasts using local quantile regression. Wind Energy 2004; 7: 47-54.
    • (2004) Wind Energy , vol.7 , pp. 47-54
    • Bremnes, J.B.1
  • 20
    • 14344258897 scopus 로고    scopus 로고
    • On-line assessment of prediction risk for wind power production forecasts
    • Pinson P, Kariniotakis G. On-line assessment of prediction risk for wind power production forecasts. Wind Energy 2004; 7: 119-132.
    • (2004) Wind Energy , vol.7 , pp. 119-132
    • Pinson, P.1    Kariniotakis, G.2
  • 23
    • 26844438590 scopus 로고    scopus 로고
    • Weather forecasting and ensemble methods
    • Gneiting T, Raftery AE. Weather forecasting and ensemble methods. Science 2003; 310: 248-249.
    • (2003) Science , vol.310 , pp. 248-249
    • Gneiting, T.1    Raftery, A.E.2
  • 24
    • 0036555398 scopus 로고    scopus 로고
    • Using medium-range weather forecasts to improve the value of wind energy production
    • Roulston MS, Kaplan DT, Hardenberg J, Smith LA. Using medium-range weather forecasts to improve the value of wind energy production. Renewable Energy 2003; 28: 585-602.
    • (2003) Renewable Energy , vol.28 , pp. 585-602
    • Roulston, M.S.1    Kaplan, D.T.2    Hardenberg, J.3    Smith, L.A.4
  • 25
    • 0142157131 scopus 로고    scopus 로고
    • A latent Gaussian Markov random-field model for spatiotemporal rainfall disaggregation
    • Allcroft DJ, Glasbey CA. A latent Gaussian Markov random-field model for spatiotemporal rainfall disaggregation. Applied Statistics 2003; 52: 487-498.
    • (2003) Applied Statistics , vol.52 , pp. 487-498
    • Allcroft, D.J.1    Glasbey, C.A.2
  • 26
    • 0001917942 scopus 로고
    • Space-time modelling with long-memory dependence: Assessing Ireland's wind-power resource
    • Haslett J, Raftery AE. Space-time modelling with long-memory dependence: assessing Ireland's wind-power resource. Applied Statistics 1989; 38: 1-50.
    • (1989) Applied Statistics , vol.38 , pp. 1-50
    • Haslett, J.1    Raftery, A.E.2
  • 27
    • 20444484849 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation
    • Gneiting T, Raftery AE, Westveld AH, Goldman T. Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review 2004; 133: 1098-1118.
    • (2004) Monthly Weather Review , vol.133 , pp. 1098-1118
    • Gneiting, T.1    Raftery, A.E.2    Westveld, A.H.3    Goldman, T.4
  • 28
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems. Transactions of the American Society of Mechanical Engineers
    • Kalman RE. A new approach to linear filtering and prediction problems. Transactions of the American Society of Mechanical Engineers, Journal of Basic Engineering 1960; 83D: 35-45.
    • (1960) Journal of Basic Engineering , vol.83 D , pp. 35-45
    • Kalman, R.E.1
  • 29
    • 67649547774 scopus 로고    scopus 로고
    • Volatility and correlation forecasting
    • Elliott G, Granger CWJ, Timmermann A eds, Elsevier-North Holland: Amsterdam
    • Andersen TG, Bollerslev T, Christoffersen PF, Diebold FX. Volatility and correlation forecasting. In Handbook of Economic Forecasting. Elliott G, Granger CWJ, Timmermann A (eds). Elsevier-North Holland: Amsterdam, 2006: 778-878.
    • (2006) Handbook of Economic Forecasting , pp. 778-878
    • Andersen, T.G.1    Bollerslev, T.2    Christoffersen, P.F.3    Diebold, F.X.4
  • 31
    • 0141737487 scopus 로고    scopus 로고
    • Modeling the variability of Sydney Harbor wind measurements
    • Cripps E, Dunsmuir WTM. Modeling the variability of Sydney Harbor wind measurements. Journal of Applied Meteorology 2003; 42: 1131-1138.
    • (2003) Journal of Applied Meteorology , vol.42 , pp. 1131-1138
    • Cripps, E.1    Dunsmuir, W.T.M.2
  • 32
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroscedasticity
    • Bollerslev T. Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 1986; 31: 307-327.
    • (1986) Journal of Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 33
    • 84993601065 scopus 로고
    • On the relation between the expected value and the volatility of the nominal excess return on stocks
    • Glosten L, Jagannathan R, Runkle L. On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance 1993; 48: 1779-1801.
    • (1993) Journal of Finance , vol.48 , pp. 1779-1801
    • Glosten, L.1    Jagannathan, R.2    Runkle, L.3
  • 34
    • 0000641348 scopus 로고
    • Conditional heteroscedasticity in asset returns: A new approach
    • Nelson DB. Conditional heteroscedasticity in asset returns: a new approach. Econometrica 1991; 52: 347-370.
    • (1991) Econometrica , vol.52 , pp. 347-370
    • Nelson, D.B.1
  • 35
    • 0001342006 scopus 로고
    • A new approach to the economic analysis of nonstationary time series and the business cycle
    • Hamilton J. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 1989; 57: 357-384.
    • (1989) Econometrica , vol.57 , pp. 357-384
    • Hamilton, J.1
  • 36
    • 45149138487 scopus 로고
    • Analysis of time series subject to changes in regime
    • Hamilton J. Analysis of time series subject to changes in regime. Journal of Econometrics 1990; 45: 357-384.
    • (1990) Journal of Econometrics , vol.45 , pp. 357-384
    • Hamilton, J.1
  • 37
    • 33748867420 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting at the Stateline Wind Energy Center: The regime-switching space-time (RST) method
    • Technical Report No. 464, Department of Statistics, University of Washington
    • Gneiting T, Larson K, Westrick K, Genton MG, Aldrich E. Calibrated probabilistic forecasting at the Stateline Wind Energy Center: the regime-switching space-time (RST) method. Technical Report No. 464, Department of Statistics, University of Washington, 2004.
    • (2004)
    • Gneiting, T.1    Larson, K.2    Westrick, K.3    Genton, M.G.4    Aldrich, E.5
  • 38
    • 0000356933 scopus 로고    scopus 로고
    • An efficient method of moments estimator for discrete choice models with choice-based sampling
    • Imbens G. An efficient method of moments estimator for discrete choice models with choice-based sampling. Econometrica 1996; 60: 1187-1214.
    • (1996) Econometrica , vol.60 , pp. 1187-1214
    • Imbens, G.1
  • 39
    • 0007272794 scopus 로고    scopus 로고
    • Efficient estimation with stratified sampling
    • Lancaster T, Imbens G. Efficient estimation with stratified sampling. Journal of Econometrics 1996; 74: 289-318.
    • (1996) Journal of Econometrics , vol.74 , pp. 289-318
    • Lancaster, T.1    Imbens, G.2
  • 40
    • 30244493399 scopus 로고    scopus 로고
    • Long memory processes and fractional integration in econometrics
    • Baillie RT. Long memory processes and fractional integration in econometrics. Journal of Econometrics 1996; 73: 5-59.
    • (1996) Journal of Econometrics , vol.73 , pp. 5-59
    • Baillie, R.T.1
  • 41
    • 0036205948 scopus 로고    scopus 로고
    • Modeling and forecasting from trend-stationary long memory models with applications to climatology
    • Baillie RT, Chung SK. Modeling and forecasting from trend-stationary long memory models with applications to climatology. International Journal of Forecasting 2002; 18: 215-226.
    • (2002) International Journal of Forecasting , vol.18 , pp. 215-226
    • Baillie, R.T.1    Chung, S.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.