-
1
-
-
18644363382
-
-
edited by J. A. Pojman and Q. Tran-Cong-Miyata, ACS Symposia Series No. 869 (ACS, Washington, D.C.
-
Nonlinear Dynamics in Polymeric Systems, edited by, J. A. Pojman, and, Q. Tran-Cong-Miyata, ACS Symposia Series No. 869 (ACS, Washington, D.C., 2004).
-
(2004)
Nonlinear Dynamics in Polymeric Systems
-
-
-
6
-
-
31544473169
-
-
10.1021/nl0520617
-
A. Ryan, Nano Lett. 10.1021/nl0520617 6, 73 (2006).
-
(2006)
Nano Lett.
, vol.6
, pp. 73
-
-
Ryan, A.1
-
7
-
-
0038605153
-
-
10.1103/PhysRevLett.90.188302
-
J. Boissonade, Phys. Rev. Lett. 10.1103/PhysRevLett.90.188302 90, 188302 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 188302
-
-
Boissonade, J.1
-
8
-
-
85059707994
-
-
edited by N. Yui, R. Mrsny, and K. Park (CRC Press, Boca Raton, FL
-
Reflexive Polymers and Hydrogels: Understanding and Designing Fast Responsive Polymeric Systems, edited by, N. Yui, R. Mrsny, and, K. Park, (CRC Press, Boca Raton, FL, 2004).
-
(2004)
Reflexive Polymers and Hydrogels: Understanding and Designing Fast Responsive Polymeric Systems
-
-
-
9
-
-
31144475670
-
-
10.1063/1.1880592
-
J. Boissonade, Chaos 10.1063/1.1880592 15, 023703 (2005).
-
(2005)
Chaos
, vol.15
, pp. 023703
-
-
Boissonade, J.1
-
11
-
-
33750709722
-
-
10.1126/science.1132412
-
V. V. Yashin and A. C. Balazs, Science 10.1126/science.1132412 314, 798 (2006).
-
(2006)
Science
, vol.314
, pp. 798
-
-
Yashin, V.V.1
Balazs, A.C.2
-
15
-
-
33751498860
-
-
10.1021/j100168a024
-
T. Yamaguchi, L. Kuhnert, Zs. Nagy-Unvarai, S. C. Muller, and B. Hess, J. Phys. Chem. 10.1021/j100168a024 95, 5831 (1991).
-
(1991)
J. Phys. Chem.
, vol.95
, pp. 5831
-
-
Yamaguchi, T.1
Kuhnert, L.2
Nagy-Unvarai, Zs.3
Muller, S.C.4
Hess, B.5
-
16
-
-
15844418076
-
-
10.1021/ja9602511
-
R. Yoshida, T. Takahashi, T. Yamaguchi, and H. Ichijo, J. Am. Chem. Soc. 10.1021/ja9602511 118, 5134 (1996).
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 5134
-
-
Yoshida, R.1
Takahashi, T.2
Yamaguchi, T.3
Ichijo, H.4
-
18
-
-
27644581190
-
-
10.2174/138527205774610949
-
R. Yoshida, Curr. Org. Chem. 10.2174/138527205774610949 9, 1617 (2005).
-
(2005)
Curr. Org. Chem.
, vol.9
, pp. 1617
-
-
Yoshida, R.1
-
19
-
-
0034245636
-
-
10.1021/jp0011600
-
R. Yoshida, J. Phys. Chem. A 10.1021/jp0011600 104, 7549 (2000).
-
(2000)
J. Phys. Chem. A
, vol.104
, pp. 7549
-
-
Yoshida, R.1
-
20
-
-
1442283935
-
-
10.1021/la035833s
-
T. Sakai and R. Yoshida, Langmuir 10.1021/la035833s 20, 1036 (2004).
-
(2004)
Langmuir
, vol.20
, pp. 1036
-
-
Sakai, T.1
Yoshida, R.2
-
21
-
-
0043190013
-
-
10.1021/jp992027e
-
R. Yoshida, J. Phys. Chem. A 10.1021/jp992027e 103, 8573 (1999).
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 8573
-
-
Yoshida, R.1
-
23
-
-
28944435574
-
-
10.1021/jp055095b
-
V. Labrot, P. De Kepper, J. Boissonade, I. Szalai, and F. Gauffre, J. Phys. Chem. B 10.1021/jp055095b 109, 21476 (2005).
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 21476
-
-
Labrot, V.1
De Kepper, P.2
Boissonade, J.3
Szalai, I.4
Gauffre, F.5
-
29
-
-
0001603730
-
-
10.1063/1.460672
-
S. Hirotsu, J. Chem. Phys. 10.1063/1.460672 94, 3949 (1991).
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 3949
-
-
Hirotsu, S.1
-
31
-
-
0038041244
-
-
10.1021/la0270035
-
S. Sasaki, S. Koga, R. Yoshida, and T. Yamaguchi, Langmuir 10.1021/la0270035 19, 5595 (2003).
-
(2003)
Langmuir
, vol.19
, pp. 5595
-
-
Sasaki, S.1
Koga, S.2
Yoshida, R.3
Yamaguchi, T.4
-
33
-
-
0003453202
-
-
Butterworth-Heinemann, Oxford, England
-
O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method (Butterworth-Heinemann, Oxford, England, 2000), Vol. 1.
-
(2000)
The Finite Element Method
, vol.1
-
-
Zienkiewicz, O.C.1
Taylor, R.L.2
-
34
-
-
55149089042
-
-
We note that the linear hexahedral element was chosen for the simplicity. Any other element could be chosen, but all of the forces and integrals should be recalculated according to a procedure similar to the one described above. There is, however, no need to choose a more complex element since the model is robust with the above choice.
-
We note that the linear hexahedral element was chosen for the simplicity. Any other element could be chosen, but all of the forces and integrals should be recalculated according to a procedure similar to the one described above. There is, however, no need to choose a more complex element since the model is robust with the above choice.
-
-
-
-
35
-
-
55149097207
-
-
We note that the actual run time for the simulation results shown in Fig. 3 (from t=0 until t=2000 with the time steps specified at the end of the model section) took 26 min on a single processor Intel Northwood 3.2 GHz.
-
We note that the actual run time for the simulation results shown in Fig. 3 (from t=0 until t=2000 with the time steps specified at the end of the model section) took 26 min on a single processor Intel Northwood 3.2 GHz.
-
-
-
-
36
-
-
55149102604
-
-
In the simulations presented in Fig. 3, as well as in the simulations presented below, we chose the standard deviation to be equal 0.05; we note, however, that any other choice of the standard deviation leads to identical results in terms of regular periodic oscillations at late times. More specifically, we compared the evolution of the same system for the cases when we start with the much smaller or larger initial fluctuation (taking the standard deviations within the range from 0.0001 to 0.9) and confirmed that the late-time oscillations always were identical to the ones shown in Fig. 3.
-
In the simulations presented in Fig. 3, as well as in the simulations presented below, we chose the standard deviation to be equal 0.05; we note, however, that any other choice of the standard deviation leads to identical results in terms of regular periodic oscillations at late times. More specifically, we compared the evolution of the same system for the cases when we start with the much smaller or larger initial fluctuation (taking the standard deviations within the range from 0.0001 to 0.9) and confirmed that the late-time oscillations always were identical to the ones shown in Fig. 3.
-
-
-
-
37
-
-
55149101976
-
-
The vertical lines in Fig. 7 between the data points at f= fL* and data points corresponding to regular oscillations (marked with blue, dark blue and green colors online for L=2, 6, and 12, respectively) simply serve as a guide for the eye; there are no simulation data points along these vertical lines.
-
The vertical lines in Fig. 7 between the data points at f= fL* and data points corresponding to regular oscillations (marked with blue, dark blue and green colors online for L=2, 6, and 12, respectively) simply serve as a guide for the eye; there are no simulation data points along these vertical lines.
-
-
-
-
39
-
-
36249022005
-
-
S. Maeda, Y. Hara, R. Yoshida, and S. Hashimoto, Adv. Mater. Res. 19, 3480 (2007).
-
(2007)
Adv. Mater. Res.
, vol.19
, pp. 3480
-
-
Maeda, S.1
Hara, Y.2
Yoshida, R.3
Hashimoto, S.4
|