메뉴 건너뛰기




Volumn 24, Issue 4, 2008, Pages 257-291

Learning to solve problems from exercises

Author keywords

Control rule learning; Learning from exercises; Macro operator learning; PAC learning; Speedup learning

Indexed keywords

EDUCATION; TEACHING;

EID: 55149107173     PISSN: 08247935     EISSN: 14678640     Source Type: Journal    
DOI: 10.1111/j.1467-8640.2008.00330.x     Document Type: Article
Times cited : (5)

References (38)
  • 1
    • 0037288370 scopus 로고    scopus 로고
    • Recent advances in hierarchical reinforcement learning
    • Special Issue on Reinforcement Learning
    • Barto, A. G., and S. Mahadevan. 2003. Recent advances in hierarchical reinforcement learning. Discrete Event Systems Journal, 13 : 41 77. Special Issue on Reinforcement Learning.
    • (2003) Discrete Event Systems Journal , vol.13 , pp. 41-77
    • Barto, A.G.1    Mahadevan, S.2
  • 2
    • 0000017646 scopus 로고
    • Explanation based learning: An alternative view
    • and
    • DeJong, G., and R. Mooney. 1986. Explanation based learning: An alternative view. Machine Learning, 1 : 145 176.
    • (1986) Machine Learning , vol.1 , pp. 145-176
    • Dejong, G.1    Mooney, R.2
  • 3
    • 0002278788 scopus 로고    scopus 로고
    • Hierarchical reinforcement learning with the MAXQ value function decomposition
    • Dietterich, T. G. 2000. Hierarchical reinforcement learning with the MAXQ value function decomposition. Journal of Artificial Intelligence Research, 13 : 227 303.
    • (2000) Journal of Artificial Intelligence Research , vol.13 , pp. 227-303
    • Dietterich, T.G.1
  • 4
    • 0014732304 scopus 로고
    • An efficient context-free parsing algorithm
    • Earley, J. 1970. An efficient context-free parsing algorithm. Communications of the ACM, 13 (2 94 102.
    • (1970) Communications of the ACM , vol.13 , Issue.2 , pp. 94-102
    • Earley, J.1
  • 6
    • 33744466799 scopus 로고    scopus 로고
    • Approximate policy iteration with a policy language bias: Solving relational markov decision processes
    • and
    • Fern, A., S. Yoon, and R. Givan. 2006. Approximate policy iteration with a policy language bias: Solving relational markov decision processes. Journal of Artificial Intelligence, 25 : 75 118.
    • (2006) Journal of Artificial Intelligence , vol.25 , pp. 75-118
    • Fern, A.1    Yoon, S.2    Givan, R.3
  • 7
    • 0015440625 scopus 로고
    • Learning and executing generalized robot plans
    • and
    • Fikes, R., P. Hart, and N. Nilsson. 1972. Learning and executing generalized robot plans. Artificial Intelligence, 3 : 251 288.
    • (1972) Artificial Intelligence , vol.3 , pp. 251-288
    • Fikes, R.1    Hart, P.2    Nilsson, N.3
  • 8
    • 2542504100 scopus 로고    scopus 로고
    • A selective macro-learning algorithm and its application to the N × N sliding-tile puzzle
    • and
    • Finkelstein, L., and S. Markovitch. 1998. A selective macro-learning algorithm and its application to the N × N sliding-tile puzzle. Journal of AI Research, 8 : 223 263.
    • (1998) Journal of AI Research , vol.8 , pp. 223-263
    • Finkelstein, L.1    Markovitch, S.2
  • 10
    • 0000148778 scopus 로고
    • A heuristic approach to the discovery of macro-operators
    • Iba, G. A. 1989. A heuristic approach to the discovery of macro-operators. Machine Learning, 3 : 285 317.
    • (1989) Machine Learning , vol.3 , pp. 285-317
    • Iba, G.A.1
  • 12
    • 0030350177 scopus 로고    scopus 로고
    • InProceedings of the 13th National Conference on Artificial Intelligence, pp.
    • Khardon, R. 1996. Learning to take actions. In Proceedings of the 13th National Conference on Artificial Intelligence, pp. 787 792.
    • (1996) Learning to Take Actions , pp. 787-792
    • Khardon, R.1
  • 13
    • 0032649290 scopus 로고    scopus 로고
    • Learning to take actions
    • Khardon, R. 1999. Learning to take actions. Machine Learning, 35 : 57 90.
    • (1999) Machine Learning , vol.35 , pp. 57-90
    • Khardon, R.1
  • 14
    • 0022045044 scopus 로고
    • Macro-operators: A weak method for learning
    • Korf, R. 1985. Macro-operators: A weak method for learning. Artificial Intelligence, 26 : 35 77.
    • (1985) Artificial Intelligence , vol.26 , pp. 35-77
    • Korf, R.1
  • 15
    • 0002982589 scopus 로고
    • Chunking in SOAR: The anatomy of a general learning mechanism
    • and
    • Laird, J., P. Rosenbloom, and A. Newell. 1986. Chunking in SOAR: The anatomy of a general learning mechanism. Machine Learning, 1 (1 11 46.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 11-46
    • Laird, J.1    Rosenbloom, P.2    Newell, A.3
  • 16
    • 55149100868 scopus 로고
    • InProceedings of the 8th International Joint Conference on Artificial Intelligence, pp.
    • Langley, P. 1983. Learning effective search heuristics. In Proceedings of the 8th International Joint Conference on Artificial Intelligence, pp. 94 96.
    • (1983) Learning Effective Search Heuristics , pp. 94-96
    • Langley, P.1
  • 18
    • 58349085967 scopus 로고    scopus 로고
    • and. InProceedings of the 17th International Conference on AI Planning and Scheduling, pp.
    • Marthi, B., S. Russell, and J. Wolfe. 2007. Angelic semantics for high-level actions. In Proceedings of the 17th International Conference on AI Planning and Scheduling, pp. 232 239.
    • (2007) Angelic Semantics for High-level Actions , pp. 232-239
    • Marthi, B.1    Russell, S.2    Wolfe, J.3
  • 19
    • 0025398889 scopus 로고
    • Quantitative results concerning the utility of explanation-based learning
    • Minton, S. 1990. Quantitative results concerning the utility of explanation-based learning. Artificial Intelligence, 42 (2-3 363 391.
    • (1990) Artificial Intelligence , vol.42 , Issue.2-3 , pp. 363-391
    • Minton, S.1
  • 21
    • 0003268983 scopus 로고
    • Explanation based generalization: A unifying view
    • and
    • Mitchell, T., R. Keller, and S. Kedar-Cabelli. 1986. Explanation based generalization: A unifying view. Machine Learning, 1 : 47 80.
    • (1986) Machine Learning , vol.1 , pp. 47-80
    • Mitchell, T.1    Keller, R.2    Kedar-Cabelli, S.3
  • 22
    • 0001770133 scopus 로고
    • Learning by experimentation: Acquiring and refining problem solving heuristics
    • and. In. Edited by. R. Michalski, J. Carbonell, and. T. Mitchell. Tioga, Palo Alto, CA, pp.
    • Mitchell, T., P. Utgoff, and R. Banerji. 1983. Learning by experimentation: Acquiring and refining problem solving heuristics. In Machine Learning. Edited by R. Michalski, J. Carbonell, and T. Mitchell. Tioga, Palo Alto, CA, pp. 163 190.
    • (1983) Machine Learning. , pp. 163-190
    • Mitchell, T.1    Utgoff, P.2    Banerji, R.3
  • 23
    • 55149108084 scopus 로고
    • InProceedings of the 2nd Annual Workshop on Computational Learning Theory, pp.
    • Natarajan, B. 1989. On learning from exercises. In Proceedings of the 2nd Annual Workshop on Computational Learning Theory, pp. 72 87.
    • (1989) On Learning from Exercises , pp. 72-87
    • Natarajan, B.1
  • 25
    • 55149111846 scopus 로고
    • and. InProceedings of the 5th International Machine Learning Conference, pp.
    • Natarajan, B., and P. Tadepalli. 1988. Two new frameworks for learning. In Proceedings of the 5th International Machine Learning Conference, pp. 402 415.
    • (1988) Two New Frameworks for Learning , pp. 402-415
    • Natarajan, B.1    Tadepalli, P.2
  • 28
  • 29
    • 0032795677 scopus 로고    scopus 로고
    • Learning Horn definitions: Theory and an application to planning
    • and
    • Reddy, C., and P. Tadepalli. 1998. Learning Horn definitions: Theory and an application to planning. New Generation Computing, 17 : 77 98.
    • (1998) New Generation Computing , vol.17 , pp. 77-98
    • Reddy, C.1    Tadepalli, P.2
  • 30
    • 1442267080 scopus 로고
    • Learning decision lists
    • Rivest, R. 1987. Learning decision lists. Machine Learning, 2 (3 229 246.
    • (1987) Machine Learning , vol.2 , Issue.3 , pp. 229-246
    • Rivest, R.1
  • 32
    • 0025389105 scopus 로고
    • Acquiring recursive and iterative concepts with explanation-based learning
    • Shavlik, J. 1990. Acquiring recursive and iterative concepts with explanation-based learning. Machine Learning, 5 : 39 70.
    • (1990) Machine Learning , vol.5 , pp. 39-70
    • Shavlik, J.1
  • 34
    • 0033170372 scopus 로고    scopus 로고
    • Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
    • and
    • Sutton, R. S., D. Precup, and S. Singh. 1999. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112 (1-2 181 211.
    • (1999) Artificial Intelligence , vol.112 , Issue.1-2 , pp. 181-211
    • Sutton, R.S.1    Precup, D.2    Singh, S.3
  • 35
    • 55149103052 scopus 로고
    • InProceedings of the 12th International Joint conference on Artificial Intelligence, pp.
    • Tadepalli, P. 1991. A formalization of explanation-based macro-operator learning. In Proceedings of the 12th International Joint conference on Artificial Intelligence, pp. 616 622.
    • (1991) A Formalization of Explanation-based Macro-operator Learning , pp. 616-622
    • Tadepalli, P.1
  • 36
    • 0026998664 scopus 로고
    • InProceedings of the 10th National Conference on Artificial Intelligence, pp.
    • Tadepalli, P. 1992. A theory of unsupervised speedup learning. In Proceedings of the 10th National Conference on Artificial Intelligence, pp. 229 234.
    • (1992) A Theory of Unsupervised Speedup Learning , pp. 229-234
    • Tadepalli, P.1
  • 38
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant, L. 1984. A theory of the learnable. Communications of the ACM, 27 (11 1134 1142.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.